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Propagating interfaces

I In many problems one needs to model moving geometries, or
interfaces. How do we numerically model them?

I Parameterization and functional representation are the simplest
ways to model numerically a continuous curve, for instance by
using splines. Parameterization may only handle very limited
transformations of domains.

I Level Set Methods are much more flexible numerical techniques
to model the evolution of interfaces. The interfaces are allowed to
develop sharp corners, break apart, and merge together.
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Propagating interfaces

Problems with moving interfaces
I fluid mechanics
I combustion
I computer animation
I soap bubbles

Looking for an optimal geometry
I inverse problems
I optimization of structure
I image processing
I free boundary problems
I structure of snowflakes
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Application: Dendritic Solidification

I Unstable growth of a solidification front.
I The front has a fractal structure.
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Application: Motion of fluids

I Consider a bubble of a fluid of one density, initially circular, and
rising in a fluid of a heavier density.

I As it rises it accelerates in the middle, and the sides are caught
up in a pair of swirling vortices.
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Application: Segmentation in Medical Imaging

Segmentation consists in extracting the important feature in an image
I When the curve passes over places where the image gradient

(that is, the change in value from one pixel to the next) is small,
we let the curve expand quickly.

I When the curve passes over places where the image gradient is
large, we suspect we are near the boundary, and slow the curve
down.

I In addition, we include a curvature term to the speed to add a
little surface tension to the expanding contour.
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Functional representation

I Imagine snow falling on a hilly terrain y = f (x , t = 0). As the
snow accumulates, the height changes in time above each point.

I The initial position of the front can not always be written as the
graph of a function.

I Abandon the functional representation for a parameterization.
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Parametric representation

I Use a parameterization of the curve. Plant a blue buoy at regular
intervals. A motion by curvature would look like this.

I The strategy is to advance the positions of the buoys according
to the arrows, recalculate new arrows and then advance the
buoys again.

I Several flaws in this approach!
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Parametric representation
I The buoys may cross over themselves. A remedy is to reinitialize

the placement of the buoys periodically.

I When the topology changes, the algorithm runs into trouble.
Determine which buoy to remove is a confusing task and
overwhelming in 3D.
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Level set representation

I Functional and parametric representations allow to model only
limited situations and have several flaws.

I The idea of a level set representation is to use a coordinate
system in one higher dimension.

I We introduce a height z = φ(t , x , y) where φ is the level set
function. The curve is the set of points {z = 0}.
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Why a level set method?

I We trade a moving curve for a moving surface - it seems to be a
bad idea in terms of complexity but ...

I The curve may be wild, whereas the surface is always
”well-behaved” (it is always a function).

I Topological changes (breaking and merging) are easy to handle.
I We can considerably reduce the cost of level set methods using

narrow bands .
I The method can be directly extended to 3D problems.
I Building accurate numerical schemes to approximate the

equations of motion is easy.
I We are using a functional representation in one higher

dimension.
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What is a level set?

Consider the function φ(x , y) = xe−(x2+y2). The c-level set of φ is

L(c) = {(x , y) ∈ Ω = [−2,2]2 | φ(x , y) = c}

The zero level set is L(0) = {(x , y) ∈ Ω | x = 0}.
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What is a level set?

Now take a time-dependent function:

φ(t , x , y) = e−(x2+y2) − t

The 0-level set of φ(t , ·) is also time-dependent

L(t ,0) = {(x , y) ∈ Ω | φ(t , x , y) = 0}

= {(x , y) ∈ Ω | e−(x2+y2) = t}
= {(x , y) ∈ Ω | x2 + y2 = − log(t)}

We observe that L(t ,0) is the equation of a curve, precisely a disk of
radius

√
− log(t) for 0 < t < 1, and the empty set for t > 1.

Modelling the curve evolution

Knowing φ(t , x , y), we can find its 0-level set (explicitely or an
approximation) and reconstruct the moving curve L(t ,0).
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Level set method: definition

Let D ⊂ RN be a bounded domain. Take a level set function

φ :
R+ × D → R

(t , x) 7→ φ(t , x)

and define the sets

Ωt := {x ∈ D | φ(t , x) < 0}
Ωc

t := {x ∈ D | φ(t , x) > 0}
∂Ωt := {x ∈ D | φ(t , x) = 0}
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Level set method: initialization

φ(0, x) can be initialized as the signed distance function to ∂Ω0

φ(0, x) = dist(x , ∂Ω0) if x ∈ Ωc

φ(0, x) = −dist(x , ∂Ω0) if x ∈ Ω

The derivatives of the signed distance function provide useful
geometric characteristics of the curve ∂Ωt

I |∇xφ| = 1 where φ is differentiable
I n(t , x) = ∇xφ(t , x) is the normal vector on ∂Ωt .
I κ(t , x) = ∆xφ(t , x) is the curvature on ∂Ωt .
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Evolution of the level set function

I If the level set function φ(t , x , y) is given, we can reconstruct the
corresponding domain Ωt .

I Usually, the only data at our disposal is an initial domain Ω0 and
a vector field (a ”speed”) V (t) which may itself depend on Ωt .

I How can we find the corresponding level set function φ(t , x , y)
without knowing Ωt?

I We need to solve a partial differential equation (PDE) for
φ(t , x , y).
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Evolution of the level set function

moving domain Ωt

X : Lagrangian coordinate
x(t ,X ): Eulerian coordinate

d
dt

x(t ,X ) = V (t , x(t ,X ))

x(0,X ) = X

Tt (V )(X ) = x(t ,X )
Ωt = Tt (V )(Ω): moving domain

I Consider a point x(t) on the moving boundary Γt := ∂Ωt .
I For this point we have φ(t , x(t)) = 0. Differentiating w.r.t. t we get

∂tφ(t , x) + V (t , x) · ∇φ(t , x) = 0.
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Hamilton-Jacobi equation

Since ∇φ(t , x) = |∇φ(t , x)|n(t , x) we get with vn = 〈V ,n〉

∂tφ(t , x) + vn(t , x)|∇φ(t , x)| = 0,

and φ(0, x) is the signed distance function to ∂Ω0.

Examples of perturbation fields vn

I vn ≡ 1: the domain becomes bigger
I vn ≡ −κ: (κ is the mean curvature) the domain becomes

smoother and shrinks to a point.
I divx (vn) ≡ 0: the volume of the domain Ωt is constant.
I In general vn can be any function with enough regularity.
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Numerical scheme

I The level set equation should not be too flat or too steep.
I Take φ to be a distance function i.e. |∇φ| = 1.
I The solution φ of the Hamilton-Jacobi equation does not remain

close to a distance function in general.
I Reinitialize φ at time t by solving

∂τϕ+ S(φ)(|∇ϕ| − 1) = 0 in R+ × D,
ϕ(0, x) = φ(t , x), x ∈ D,

up to the stationary state, with the approximate sign function

S(φ) =
φ√

φ2 + |∇φ|2ε2

with ε = min(∆x ,∆y) and ∆x and ∆y are the space steps
discretization.
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Extend the normal velocity

I If vn = 〈V ,n〉 is defined only on Γt it is necessary to extend it on
the entire domain D.

I At the same time we may enforce φ to remain (close to) a
distance function.

I Compute an extended normal velocity Vext constant along the
normal, i.e. Vext should satisfy

∇Vext · ∇φ = 0 in R+ × D,

it can be shown that φ then satisfies |∇φ| = 1.
I Vext(t , x) = lim

τ→∞
q(τ, x) with q solution of

∂τq + S(φ)
∇φ
|∇φ|

· ∇q = 0 in R+ × D

q(0, x) = vn(t , x)1Γt , x ∈ D
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The fast marching method

I Unlike level set methods, Fast Marching Methods are designed
for problems in which the speed function never changes sign.

I This allows us to convert the problem to a stationary formulation,
because the front crosses each point on the grid only once.

I Can be seen as a special case of domain evolution, for which
very fast algorithms exists.

I This amounts to solving an Eikonal equation for which we can
use a Dijkstra-like method.
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Thanks for your attention!
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