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Optimal control problem

General formulation
I (P): min

(u,y)∈Uad×Y
J(u, y) subject to E(u, y) = 0,

U :={u ∈ L2(D), 0 ≤ u ≤ 1 a.e. in D},

Uad :={u ∈ U,
∫

D
u = m}, 0 < m < |D|,

I D is a bounded domain of RN , N ∈ {2,3}.
I J : L2(D)× Y → R and E : U × Y → Z .
I Y ,Z are Banach spaces.
I E denotes a class of semilinear equations.

I Ito & Kunisch (2004): L2-control cost, primal-dual active set
method for nonlinear problems and bilateral constraints.

I Stadler (2009), Wachsmuth (2011): L1-control cost, linear case.
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Motivation

Shape/topology optimization

Shape optimization: the control is a set Ω ⊂ RN , or its indicator
function χΩ which takes values in {0,1}.
Topology optimization: if the topology is unknown.

I Allaire, Bendsøe...: Relaxed formulation.
I Delfour-Zolésio, Murat-Simon..: Smooth boundary perturbations.
I Masmoudi, Sokolowski..: Topological derivative.

Optimal control approach

I With an L1-control cost and a linear elliptic state equation, the
control u eventually takes 0− 1 values.

I Nonsmooth Newton methods available.
I L1-control cost ‖u‖L1 corresponds to a volume constraint.
I Total Variation ‖Du‖L1 corresponds to a perimeter constraint.
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Nonsmooth Newton Method

Main idea
I Reformulation of the optimality conditions for (P):

Φ(u, y ,p, λ) = 0

where (p, λ) are Lagrange multipliers.
I Φ is a nonsmooth, nonlinear vector function.
I Generalized differentiability of Φ: Newton derivative.
I Use a semismooth Newton Method (Hintermüller,Ito,Kunisch ...)

Binary and sparse solutions
I In certain cases we show that the solution is binary.
I Numerical solutions exhibits in general a piecewise constant

nature for the semilinear problem.
I The volume constraint allows to exactly control the level of

sparsity of u.
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Problem statement and optimality conditions

Definition

For every u ∈ Uad we define the cone K (u) ⊂ L2(D) by

∀v ∈ L2(D), v ∈ K (u)⇐⇒

 v = 0 a.e. in [0 < u < 1],
v ≥ 0 a.e. in [u = 0],
v ≤ 0 a.e. in [u = 1].

Theorem (optimality conditions)

Let (ū, ȳ) be an optimal solution of (P). With appropriate minimal
assumptions on E , J, there exists (λ̄, p̄) ∈ R× Z ′ such that

Lu(ū, ȳ , p̄) + λ̄ ∈ K (ū),

Ly (ū, ȳ , p̄) = 0,
Lp(ū, ȳ , p̄) = 0,∫

D
ū = m.
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Problem statement and optimality conditions

For all (u, y ,p, λ,g) ∈ L2(D)× Y × Z ′ ×R× L2(D) we set

T (u,g) := u max(0,g) + (1− u) min(0,g),

and

Φ(u, y ,p, λ) :=


T (u,Lu(u, y ,p) + λ)

Ly (u, y ,p)
Lp(u, y ,p)∫

D u −m

 .

Theorem

Let (ū, ȳ , p̄, λ̄) ∈ L2(D)× Y × Z ′ ×R. The optimality conditions are
equivalent to

Φ(ū, ȳ , p̄, λ̄) = 0.
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Semismooth Newton method

Newton derivative
Let X ,Y be Banach spaces and U ⊂ X open. If there exists
G : U → L(X ,Y) such that for all U ∈ V

lim
h→0

1
‖h‖X

‖F (u + h)− F (u)−G(u + h)h‖Y = 0

then F : U → Y is Newton differentiable, G is the Newton derivative.

Semismooth Newton method

Suppose F (u∗) = 0 and F : X → Y is Newton differentiable in U
containing u∗, with Newton derivative G. If G(u) is nonsingular for all
u ∈ U and {‖G(u)−1‖L(Y,X ),u ∈ U} is bounded, then

un+1 = un −G(un)−1F (un)

converges superlinearly to u∗, if ‖u0 − u∗‖X is sufficiently small.
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Regularization

I Problem: the generalized Jacobian of Φ is not invertible.
I Remedy: regularization of Φ by means of

Φε(u, y ,p, λ) :=


T ε(u,Lu(u, y ,p) + λ)

Ly (u, y ,p)
Lp(u, y ,p)
〈1,u〉 −m

 .

I Examples of regularization:

T ε(u,g) = u max(0,g + ε) + (1− u) min(0,g − ε),

T ε(u,g) =
√
ε2 + g2 + min(0,g).

I DΦε(u, y ,p, λ) is invertible and ‖DΦε(u, y ,p, λ)−1‖ is uniformly
bounded for (u, y ,p, λ) close to the solution.
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Semilinear problem

I (P): min
(u,y)∈Uad×Y

J(u, y) subject to E(u, y) = 0,

J(u, y) =
1
2

∫
D

(y − y†)2,

E(u, y) = Ay + ψ(y)− u,

where y† ∈ L2(D), Y = H1
0 (D), Z = H−1(D), A = −∆, and

ψ ∈ C3(R), non-decreasing, and such that

‖ψ(k)‖L∞ ≤ Mk
ψ, k = 1,2,3,

for some positive constants Mk
ψ.

I D is of class C2 or convex.
I For all u ∈ L2(D), there exists a unique solution

y(u) ∈ H2(D) ∩ H1
0 (D) to the equation E(u, y(u)) = 0.
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Existence of Regularized solutions

(A): Assumption on p

∃γ > 0 such that, for all (u, y ,p) ∈ U × H1
0 (D)× H1

0 (D) satisfying

Ay + ψ(y) = u,

[A + ψ′(y)]p = −(y − y†),

there holds
1 + ψ′′(y)p ≥ γ.

This assumption is fulfilled if M2
ψ is small enough.

Theorem (Existence of solutions)

Let Assumption (A) hold. For each ε > 0 there exists

(uε, yε,pε, λε) ∈ L2(D, [0,1])× (H2 ∩ H1
0 )(D)× (H2 ∩ H1

0 )(D)×R

such that Φε(uε, yε,pε, λε) = 0.
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Convergence of the Newton algorithm

Theorem

Assume Assumption (A) holds and Φε(ζε) = 0 with
ζε = (uε, yε,pε, λε). Then

ζn+1 = ζn − DΦε(ζn)−1Φε(ζn)

is well-defined and converges superlinearly to ζε as long as ‖ζ0 − ζε‖
is sufficiently small.

Proof
The main tasks are:

I the invertibility of the generalized gradient DΦε(ζ),
I a uniform bound on ‖DΦε(ζ)−1‖ in an appropriate norm.
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Convergence of the regularized solution

Theorem

Let {εk}k∈N, εk positive, εk → 0 and Φεk (ζεk ) = 0.
I For any s < 2 there exists a subsequence {εkl}l∈N and

(u∗, λ∗) ∈ L2(D, [0,1])×R such that

uεkl ⇀ u∗ weakly in L2(D), yεkl → y∗ strongly in Hs(D),

pεkl → p∗ strongly in Hs(D), λεkl → λ∗ in R,

where y∗,p∗ are given by

Ay∗ + ψ(y∗) = u∗,

B(y∗)p∗ = −(y∗ − y†).

I Every cluster point ζ∗ (for s < 2 large enough) satisfies

Φ(ζ∗) = 0.
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Numerical method

I Ensure a constant rate of convergence of the merit function

R(ε) =
1
2
‖Φ(ζε)‖2.

I Look for a sequence {εk} such that

R(εk+1)

R(εk )
≈ τ with 0 < τ < 1.

I Define Ψ(ε, ζ) = Φε(ζ). Update

εk+1 = εkτ
βk ,

βk =
−R(εk )

εk 〈DΦ(ζεk )DΦεk (ζεk )−1DεΨ(εk , ζεk ),Φ(ζεk )〉
.

I Define ρ(ln ε) = ln R(ε). Stopping criterions

‖ζk − ζk−1‖
‖ζk−1‖

< κN and ρ′(ln ε) < κE .
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Numerical experiments: linear case

I domain D =]0,1[2, volume constraint m = 0.5, n = 39601 nodes,
I convergence rate for R(ε): τ = 0.1
I stopping criterions: κN = 10−8, κE = 10−3

I y†1 ≡ 0.01 and y†2 (x1, x2) = sin(2πx1) sin(2πx2)

I CPU time: 5 minutes (Matlab-Desktop PC)

Figure: optimal control for y† = y†
1 (left), convergence history of

log10 R(ε) for y† = y†
1 (middle), and optimal control for y† = y†

2 (right).
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Numerical experiments: nonlinear case

I Fix y† = 0.01, and consider two functions ψ:

ψ1(t) = eat − 1, a = 103,
ψ2(t) = arctan(at), a = 102.

I ψ2 satisfies our assumptions, but not ψ1.
I appearance of intermediate regions.

Figure: optimal control for ψ = ψ1 (left), convergence history of log10 R(ε) for
ψ = ψ1 (middle), and optimal control for ψ = ψ2 (right).
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Thanks for your attention!
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