A semismooth Newton method for a class of semilinear optimal control problems with box and volume constraints

Antoine Laurain (joint work with Samuel Amstutz)

Technical University of Berlin

PICOF'12

Optimal control problem

General formulation

► (P):
$$\min_{(u,y) \in U_{ad} \times Y} J(u,y)$$
 subject to $E(u,y) = 0$,
 $U := \{u \in L^2(D), 0 \le u \le 1 \text{ a.e. in } D\},$
 $U_{ad} := \{u \in U, \int_D u = m\}, 0 < m < |D|,$

- ▶ *D* is a bounded domain of \mathbb{R}^N , $N \in \{2, 3\}$.
- $J: L^2(D) \times Y \to \mathbb{R}$ and $E: U \times Y \to Z$.
- ► *Y*, *Z* are Banach spaces.
- E denotes a class of semilinear equations.
- Ito & Kunisch (2004): L²-control cost, primal-dual active set method for nonlinear problems and bilateral constraints.
- ► Stadler (2009), Wachsmuth (2011): *L*¹-control cost, linear case.

Shape/topology optimization

Shape optimization: the control is a set $\Omega \subset \mathbb{R}^N$, or its indicator function χ_{Ω} which takes values in $\{0, 1\}$. Topology optimization: if the topology is unknown.

- Allaire, Bendsøe...: Relaxed formulation.
- Delfour-Zolésio, Murat-Simon..: Smooth boundary perturbations.
- Masmoudi, Sokolowski..: Topological derivative.

Optimal control approach

- ► With an L¹-control cost and a linear elliptic state equation, the control u eventually takes 0 1 values.
- Nonsmooth Newton methods available.
- L^1 -control cost $||u||_{L^1}$ corresponds to a volume constraint.
- Total Variation $||Du||_{L^1}$ corresponds to a perimeter constraint.

Nonsmooth Newton Method

Main idea

Reformulation of the optimality conditions for (P):

 $\Phi(u, y, p, \lambda) = 0$

where (p, λ) are Lagrange multipliers.

- Φ is a nonsmooth, nonlinear vector function.
- Generalized differentiability of Φ: Newton derivative.
- Use a semismooth Newton Method (Hintermüller, Ito, Kunisch ...)

Binary and sparse solutions

- In certain cases we show that the solution is binary.
- Numerical solutions exhibits in general a piecewise constant nature for the semilinear problem.
- The volume constraint allows to exactly control the level of sparsity of u.

Problem statement and optimality conditions

Definition

For every $u \in U_{ad}$ we define the cone $K(u) \subset L^2(D)$ by

$$\forall v \in L^2(D), \qquad v \in K(u) \Longleftrightarrow \left\{ \begin{array}{l} v = 0 \text{ a.e. in } [0 < u < 1], \\ v \ge 0 \text{ a.e. in } [u = 0], \\ v \le 0 \text{ a.e. in } [u = 1]. \end{array} \right.$$

Theorem (optimality conditions)

Let (\bar{u}, \bar{y}) be an optimal solution of (\mathcal{P}) . With appropriate minimal assumptions on E, J, there exists $(\bar{\lambda}, \bar{p}) \in \mathbb{R} \times Z'$ such that

$$\begin{array}{rcl} L_u(\bar{u},\bar{y},\bar{p})+\bar{\lambda} &\in & \mathcal{K}(\bar{u}),\\ L_y(\bar{u},\bar{y},\bar{p}) &= & 0,\\ L_p(\bar{u},\bar{y},\bar{p}) &= & 0,\\ &\int_D \bar{u} &= & m. \end{array}$$

A (10) A (10) A (10)

Problem statement and optimality conditions

For all $(u, y, p, \lambda, g) \in L^2(D) \times Y \times Z' \times \mathbb{R} \times L^2(D)$ we set $T(u, g) := u \max(0, g) + (1 - u) \min(0, g),$

and

$$\Phi(u, y, p, \lambda) := \begin{pmatrix} T(u, L_u(u, y, p) + \lambda) \\ L_y(u, y, p) \\ L_p(u, y, p) \\ \int_D u - m \end{pmatrix}$$

Theorem

Let $(\bar{u}, \bar{y}, \bar{p}, \bar{\lambda}) \in L^2(D) \times Y \times Z' \times \mathbb{R}$. The optimality conditions are equivalent to

 $\Phi(\bar{u},\bar{y},\bar{p},\bar{\lambda})=0.$

A (10) A (10)

Newton derivative

Let \mathcal{X}, \mathcal{Y} be Banach spaces and $\mathcal{U} \subset \mathcal{X}$ open. If there exists $G : \mathcal{U} \to \mathcal{L}(\mathcal{X}, \mathcal{Y})$ such that for all $\mathcal{U} \in V$

$$\lim_{h\to 0} \frac{1}{\|h\|_{\mathcal{X}}} \|F(u+h) - F(u) - G(u+h)h\|_{\mathcal{Y}} = 0$$

then $F : U \to \mathcal{Y}$ is Newton differentiable, G is the Newton derivative.

Semismooth Newton method

Suppose $F(u^*) = 0$ and $F : \mathcal{X} \to \mathcal{Y}$ is Newton differentiable in \mathcal{U} containing u^* , with Newton derivative G. If G(u) is nonsingular for all $u \in \mathcal{U}$ and $\{\|G(u)^{-1}\|_{\mathcal{L}(\mathcal{Y},\mathcal{X})}, u \in \mathcal{U}\}$ is bounded, then

$$u_{n+1} = u_n - G(u_n)^{-1}F(u_n)$$

converges superlinearly to u^* , if $||u_0 - u^*||_{\mathcal{X}}$ is sufficiently small.

< ロ > < 同 > < 回 > < 回 > .

Regularization

- Problem: the generalized Jacobian of Φ is not invertible.
- Remedy: regularization of Φ by means of

$$\Phi^{\varepsilon}(u, y, p, \lambda) := \begin{pmatrix} T^{\varepsilon}(u, L_u(u, y, p) + \lambda) \\ L_y(u, y, p) \\ L_p(u, y, p) \\ \langle 1, u \rangle - m \end{pmatrix}$$

Examples of regularization:

$$T^{\varepsilon}(u,g) = u \max(0,g+\varepsilon) + (1-u)\min(0,g-\varepsilon),$$

$$T^{\varepsilon}(u,g) = \sqrt{\varepsilon^2 + g^2} + \min(0,g).$$

DΦ^ε(u, y, p, λ) is invertible and ||DΦ^ε(u, y, p, λ)⁻¹|| is uniformly bounded for (u, y, p, λ) close to the solution.

Semilinear problem

► (\mathcal{P}): $\min_{(u,y)\in U_{ad}\times Y} J(u,y)$ subject to E(u,y) = 0,

$$J(u, y) = \frac{1}{2} \int_{D} (y - y^{\dagger})^2,$$

$$E(u, y) = Ay + \psi(y) - u,$$

where $y^{\dagger} \in L^2(D)$, $Y = H_0^1(D)$, $Z = H^{-1}(D)$, $A = -\Delta$, and $\psi \in C^3(\mathbb{R})$, non-decreasing, and such that

$$\|\psi^{(k)}\|_{L^{\infty}} \leq M_{\psi}^{k}, \qquad k = 1, 2, 3,$$

for some positive constants M_{ψ}^k .

- *D* is of class C^2 or convex.
- For all $u \in L^2(D)$, there exists a unique solution $y(u) \in H^2(D) \cap H_0^1(D)$ to the equation E(u, y(u)) = 0.

Existence of Regularized solutions

(A): Assumption on *p*

 $\exists \gamma > 0$ such that, for all $(u, y, p) \in U \times H_0^1(D) \times H_0^1(D)$ satisfying

$$Ay + \psi(y) = u,$$

 $[A + \psi'(y)]p = -(y - y^{\dagger}),$

there holds

$$1 + \psi''(\mathbf{y})\mathbf{p} \geq \gamma.$$

This assumption is fulfilled if M_{ψ}^2 is small enough.

Theorem (Existence of solutions)

Let Assumption (A) hold. For each $\varepsilon > 0$ there exists

$$(u_{\varepsilon}, y_{\varepsilon}, p_{\varepsilon}, \lambda_{\varepsilon}) \in L^2(D, [0, 1]) \times (H^2 \cap H^1_0)(D) \times (H^2 \cap H^1_0)(D) \times \mathbb{R}$$

such that $\Phi^{\varepsilon}(u_{\varepsilon}, y_{\varepsilon}, p_{\varepsilon}, \lambda_{\varepsilon}) = 0.$

Convergence of the Newton algorithm

Theorem

Assume Assumption (A) holds and $\Phi^{\varepsilon}(\zeta^{\varepsilon}) = 0$ with $\zeta^{\varepsilon} = (u_{\varepsilon}, y_{\varepsilon}, p_{\varepsilon}, \lambda_{\varepsilon})$. Then

$$\zeta_{n+1} = \zeta_n - D\Phi^{\varepsilon}(\zeta_n)^{-1}\Phi^{\varepsilon}(\zeta_n)$$

is well-defined and converges superlinearly to ζ^{ε} as long as $\|\zeta_0 - \zeta^{\varepsilon}\|$ is sufficiently small.

Proof

The main tasks are:

- the invertibility of the generalized gradient $D\Phi^{\varepsilon}(\zeta)$,
- a uniform bound on $||D\Phi^{\varepsilon}(\zeta)^{-1}||$ in an appropriate norm.

Convergence of the regularized solution

Theorem

Let $\{\varepsilon_k\}_{k\in\mathbb{N}}$, ε_k positive, $\varepsilon_k \to 0$ and $\Phi^{\varepsilon_k}(\zeta^{\varepsilon_k}) = 0$.

▶ For any s < 2 there exists a subsequence $\{\varepsilon_{k_l}\}_{l \in \mathbb{N}}$ and $(u^*, \lambda^*) \in L^2(D, [0, 1]) \times \mathbb{R}$ such that

 $\begin{array}{ll} u^{\varepsilon_{k_l}} \rightharpoonup u^* \ \ \text{weakly in } L^2(D), & y^{\varepsilon_{k_l}} \rightarrow y^* \ \ \text{strongly in } H^s(D), \\ p^{\varepsilon_{k_l}} \rightarrow p^* \ \ \text{strongly in } H^s(D), & \lambda^{\varepsilon_{k_l}} \rightarrow \lambda^* \ \ \text{in } \mathbb{R}, \end{array}$

where y^*, p^* are given by

$$egin{aligned} & {\cal A} {m y}^* + \psi ({m y}^*) = {m u}^*, \ & {\cal B} ({m y}^*) {m p}^* = - ({m y}^* - {m y}^\dagger) \, . \end{aligned}$$

• Every cluster point ζ^* (for s < 2 large enough) satisfies

$$\Phi(\zeta^*) = \mathbf{0}.$$

Numerical method

Ensure a constant rate of convergence of the merit function

$$R(arepsilon) = rac{1}{2} \| \Phi(\zeta^arepsilon) \|^2.$$

• Look for a sequence $\{\varepsilon_k\}$ such that

$$\frac{R(\varepsilon_{k+1})}{R(\varepsilon_k)} \approx \tau \quad \text{ with } 0 < \tau < 1.$$

► Define
$$\Psi(\varepsilon, \zeta) = \Phi^{\varepsilon}(\zeta)$$
. Update
 $\varepsilon_{k+1} = \varepsilon_k \tau^{\beta_k},$
 $\beta_k = \frac{-R(\varepsilon_k)}{\varepsilon_k \langle D\Phi(\zeta^{\varepsilon_k}) D\Phi^{\varepsilon_k}(\zeta^{\varepsilon_k})^{-1} D_{\varepsilon} \Psi(\varepsilon_k, \zeta^{\varepsilon_k}), \Phi(\zeta^{\varepsilon_k}) \rangle}.$

• Define $\rho(\ln \varepsilon) = \ln R(\varepsilon)$. Stopping criterions

$$\frac{\|\zeta_k - \zeta_{k-1}\|}{\|\zeta_{k-1}\|} < \kappa_N \text{ and } \rho'(\ln \varepsilon) < \kappa_E.$$

Numerical experiments: linear case

- ▶ domain $D =]0, 1[^2$, volume constraint m = 0.5, n = 39601 nodes,
- convergence rate for $R(\varepsilon)$: $\tau = 0.1$
- stopping criterions: $\kappa_N = 10^{-8}$, $\kappa_E = 10^{-3}$
- $y_1^{\dagger} \equiv 0.01$ and $y_2^{\dagger}(x_1, x_2) = \sin(2\pi x_1)\sin(2\pi x_2)$
- CPU time: 5 minutes (Matlab-Desktop PC)

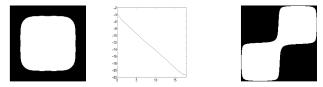


Figure: optimal control for $y^{\dagger} = y_1^{\dagger}$ (left), convergence history of $\log_{10} R(\varepsilon)$ for $y^{\dagger} = y_1^{\dagger}$ (middle), and optimal control for $y^{\dagger} = y_2^{\dagger}$ (right).

Numerical experiments: nonlinear case

• Fix $y^{\dagger} = 0.01$, and consider two functions ψ :

$$\psi_1(t) = e^{at} - 1, \qquad a = 10^3, \\ \psi_2(t) = \arctan(at), \qquad a = 10^2.$$

- ψ_2 satisfies our assumptions, but not ψ_1 .
- appearance of intermediate regions.

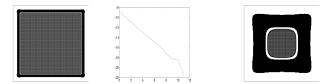


Figure: optimal control for $\psi = \psi_1$ (left), convergence history of $\log_{10} R(\varepsilon)$ for $\psi = \psi_1$ (middle), and optimal control for $\psi = \psi_2$ (right).

Thanks for your attention!