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Problem Statement

Find the optimal distribution of two conducting materials A and B of
given volume and conductivities « and 3 in a fixed domain Q in order
to minimize the ground state eigenvalue.
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Problem setting

Eigenvalue problem

@QCRY O<a<f, 0<m<|Q
@ B C Q2 measurable, A=Q\B
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Problem setting

Eigenvalue problem

@QCRY O<a<f, 0<m<|Q
@ B C Q2 measurable, A=Q\B
o

—div(o(B)Vu) = A(B)uin Q
u=00n9N.

@ o(B) = axxa + Bxs, (xa and xg are indicator functions)
@ \(B) is the first eigenvalue or ground state.
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Problem setting

Eigenvalue problem

@QCRY O<a<f, 0<m<|Q
@ B C Q2 measurable, A=Q\B
o

—div(o(B)Vu) = A(B)uin Q
u=00n9N.

@ o(B) = axxa + Bxs, (xa and xg are indicator functions)
@ \(B) is the first eigenvalue or ground state.

Shape Optimization Problem

minimize  A(B)
subjectto B e B:={B C Q, Bmeasurable, |B| = m}
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Known results

Existence

@ Open question for general geometries of Q.
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Known results

Existence
@ Open question for general geometries of Q.
@ Existence of relaxed solutions:

-> Steven Cox and Robert Lipton (1996). “Extremal eigenvalue
problems for two-phase conductors.” In: Arch. Rational Mech.
Anal. 136.2, pp. 101-117
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@ Open question for general geometries of Q.
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Existence
@ Open question for general geometries of Q.
@ Existence of relaxed solutions:

-> Steven Cox and Robert Lipton (1996). “Extremal eigenvalue
problems for two-phase conductors.” In: Arch. Rational Mech.
Anal. 136.2, pp. 101-117

@ Existence of a radially symmetric solution when € is a ball.

-> A. Alvino, G. Trombetti, and P.-L. Lions (1989). “On optimization
problems with prescribed rearrangements.” In: Nonlinear Anal.
13.2, pp. 185-220

-> Carlos Conca, Rajesh Mahadevan, and Leén Sanz (2009). “An
extremal eigenvalue problem for a two-phase conductor in a ball.”

In: Appl. Math. Optim. 60, pp. 173—184
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Problem setting

Characterization of minimizers

Can we find some explicit solutions?
@ The problem is solved explicitely in 1D.

-> M. G. Krein (1955). “On certain problems on the maximum and
minimum of characteristic values and on the Lyapunov zones of
stability.” In: Amer. Math. Soc. Transl. (2) 1, pp. 163—187
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Problem setting

Characterization of minimizers

Can we find some explicit solutions?
@ The problem is solved explicitely in 1D.

-> M. G. Krein (1955). “On certain problems on the maximum and
minimum of characteristic values and on the Lyapunov zones of
stability.” In: Amer. Math. Soc. Transl. (2) 1, pp. 163—187

Conjecture (Conca et al., Dambrine)

@ When Q c RY is a ball, the minimizer is also a ball:

B* = B(0, r*) = argmin \(B)
BeB
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Problem setting

Characterization of minimizers

Can we find some explicit solutions?

@ The problem is solved explicitely in 1D.

-> M. G. Krein (1955). “On certain problems on the maximum and
minimum of characteristic values and on the Lyapunov zones of
stability.” In: Amer. Math. Soc. Transl. (2) 1, pp. 163—187

Conjecture (Conca et al., Dambrine)

@ When Q ¢ RY is a ball, the minimizer is also a ball:

B* = B(0, r*) = argmin \(B)
BeB

-> We prove that this conjecture is not true!
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Problem setting

Characterization of minimizers

Can we find some explicit solutions?

@ The problem is solved explicitely in 1D.

-> M. G. Krein (1955). “On certain problems on the maximum and
minimum of characteristic values and on the Lyapunov zones of
stability.” In: Amer. Math. Soc. Transl. (2) 1, pp. 163—187

N,

Conjecture (Conca et al., Dambrine)

@ When Q ¢ RY is a ball, the minimizer is also a ball:

B* = B(0, r*) = argmin \(B)
BeB

-> We prove that this conjecture is not true!

Solution in a particular case

We exhibit global minimizers in low contrast regime.
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Low contrast regime

Asymptotic Expansion

@ Low contrast regime: 8 = a + ¢ with ¢ > 0 small.
@ Conductivity o = a +exs
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Low contrast regime

Asymptotic Expansion

@ Low contrast regime: 8 = a + ¢ with ¢ > 0 small.
@ Conductivity o = a +exs

Theorem (Rellich)

The first eigenvalue \¢ of
—div(c*VU®) = A°u® in Q,
u® =0 on o1,

is an analytic function of € in a neighbourhood of ¢ = 0 and the
positive eigenfunction u® satisfying

/Q(uf)2 1

is analytic with respect to e.
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Asymptotic Expansion

We plug the following anséatze:

U=v+evy+...,
AN =Xter+...,

in —div(c®Vu©) = A° and u® = 0. Gather terms of similar order in ¢ :

— diV(aVV()) = XoVW in Q, (21)

Vo =0 on 9Q. (2.2)

— diV(OéVV1) — )\0 Vi = diV(XBVVO) + )\1 Vo in Q, (23)
vi =0 on o%. (2.4)

(2.3)-(2.4) has a solution if and only if (Fredholm alternative)
/diV(XBVVO)Vo +>\1/ Vg =0.
Q Q
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Asymptotic Expansion

Using [, v& = 1 we obtain

A z—/diV(XBVVO)Vo = :A1(B):/WVO\2.
Q B

If Bf € B is a minimizer of \°(-) then:

Mi(BY) — jnf. )\1(8)‘ < Cet.
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Optimality conditions

@ There exists c* > 0 such that whenever B is a measurable
subset of Q2 satisfying

{x:|Vwx)| <c'}cBcC{x:|Vw(x)| <c*}

and |B| = m, then B is a solution for the problem of minimizing
A (B) over B € B.

@ If{x:|Vw(x)| = c*} is of measure zero, then the unique
solution (up to a set of measure zero) is the set

B* = {x:|Vw(x)| < c*}.

This is the case if Q) is a disk.
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Low contrast regime

The Disk Case

@ Q=1B(0,1)in2D or 3D
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The Disk Case

@ Q=1B(0,1)in2D or 3D
@ The solution of —div(aVvy) = AV in Qand vo =0 0on 9N is
radial: vp(x) = w(|x])
P (r) + (d = 1)rw(r) + 122 wo(r) = 0,
wp(0) = 0 wo(1) = 0.
@ In 2D, wy(r) = Jo(nar) where Jp is the Bessel function of the first
kind and ny is its first zero.
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The Disk Case

|Vvo|2(x) = (wi(r))? := (—w{(r))? and the solution is:
M(B) = /B|Vvo|2 = B* = {x: wy(r) < ¢*}

where ¢* is such that |B*| = m.

0 o1 02 03 04 05 06 07 08 03 1 0 01 o0z 03 04 05 06 07 08 03 !

Figure : wo(r) (red), and in dimensions d = 2 (left)
and d = 3 (right), wy increasing on [0, r}] and decreasing on [r, 1], and r§ is
such that wy (r3) = wy(1).
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Low contrast regime

The Disk Case

The solution B* = mingeg A1(B) is of two possible types.
There exists M = wy(r9)? such that

@ Type I: If m < m then B* = B(0, (m/w4)'/9) or,

@ Type II: If m > m then there exists £° and &' with
(mjwqg)'/? < €0 < ¢' < 1 such that

B = B(0,¢%) U (B(0,1)\ B(0,¢")) -

When Q = B(0,1), for 8 = o + ¢ sufficiently close to o and m > 'm,
B = B(0, r*) does not minimize A\*(B) in B.

A. Laurain Shape optimization of the ground state for two-phase conductors



Low contrast regime

regime - other geometries

m. ‘
o
o o1 0z 03 o4 05 06 07 08 03 1

Figure : Optimal distribution of the material B (black) and A (white) when Q is
a square in low contrast regime. The set B contains the corners and the
center. m/|Q| ~ 14%.
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Low contrast regime

Low contrast regime - other geometries

Figure : Optimal distribution of the material B (black) and A (white) when Q is
a polygon in low contrast regime. The set A contains the reentrant corner.
m/|Q| ~ 34%.
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Low contrast regime

Low contrast regime - other geometries

Figure : Optimal distribution of the material B (red) and A (yellow) when Q is
aring in low contrast regime. The set Biis also a ring. m/|Q| ~ 17%.

C. Conca, A. Laurain, and R. Mahadevan (2012). “Minimization of the
Ground State for Two Phase Conductors in Low Contrast Regime.”
In: SIAM Journal on Applied Mathematics 72.4, pp. 1238—1259

A. Laurain Shape optimization of the ground state for two-phase conductors



Low contrast regime
Global optimum in low contrast regime

@ We want to prove that B* = argmin A{(B) is also a minimizer of
A%(B) for small e.

@ We have found minimizers of \{(B) but not of A*(B), it was
enough to disprove the conjecture.

@ The minimizer B. = argmin A*(B) does not necessarily converge
ase— 0.

@ If it does, B. does not necessarily converge to B* = argmin A (B).

@ We need to prove first B. — B* in an appropriate sense. The
convergence of B. is linked to the convergence Vu. — Vuy. We
need a convergence of Vu, stronger than just L2,
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Low contrast regime
L>°-convergence of the gradient

Theorem (arbitrary Q)

For e > 0 small, there exists c independent of e and B such that

|lus(B) — toll oy < ce?  VBEB.

Theorem (case Q = B(0, 1))

Assume Q = 1B(0, 1) and B is radially symmetric. The functions u.
and uy are in W'->(Q) and there exists o > 0 such that for all ¢ < <o,

[Vu: = V|l () < cVe.

Idea of the proof: the radial symmetry brings additional regularity, and
use Hardy's inequality.
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Quasi-optimal sets

Theorem
Let

= (mjwg)'?,  wg=|B(0,1)].

Let B C Q be a radially symmetric measurable set and m < m. For all
d > 0, there exists eg = €o(0) > 0 and B; radially symmetric and
containing the origin such that for all 0 < ¢ < go(6) we have

AA°(B5) <A°(B)  |Bs|=m,

and
B(0,r* —§) Cc By c B(0,r* +9)

Idea of the proof: use ||Vu. — V|| =) < ¢/ and threshold.
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Low contrast regime
Global optimum in low contrast regime

@ Goal: prove the existence of g > 0 such that
A*(B") < A°(B),

forall B € B and e < ¢y, where B* = B(0, r*).
@ Fact: for all e > 0 there exists a §(¢) > 0 such that

A*(Bj(e)) = A°(B)

holds with §(¢) — 0 as ¢ — 0 and §(¢) strictly increasing.
@ We need: the other inequality

A (B7) < A°(Bj()):

o Bg(s) is “close” to B*, otherwise no information.

@ ltis just enough to perform an asymptotic expansion of the
eigenvalue with respect to 4(¢).

A. Laurain Shape optimization of the ground state for two-phase conductors



Low contrast regime
Global optimum in low contrast regime

@ We prove: Forall0 < e <egand 0 < ¢ < o we have
X*(B") < A°(Bs),
where B; is any radially symmetric set satisfying
B(0,r* —4§) C Bs € B(0,r* + ).
@ Choose Bs = Bj., for e small enough
X (B) < X (Bs) = X(By(o)) < M(B),
@ Idea of the proof: find an expansion with p(4) > 0
N (Bs) = A°(B*) + p(6)X° + R(e, ) as p(8) — O

and R(e,d)/p(6) — 0 uniformly as (d,¢) — 0. Prove then that
¢ > 0.
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Global optimum in low contrast regime - type |

If m < 'm there exists g > 0 such that for all B € B we have

A (B*) < \°(B) forall 0 <e<eg

and the equality occurs only when B = B* almost everywhere in Q.

A. Laurain Shape optimization of the ground state for two-phase conductors



Global optimum in low contrast regime - type |l

Theorem
If m > m there exists g > 0 such that for all B € 1B and for all

0 < & < g there exists €2, ¢! such that
Xe(B:) < (B)

where

B! =1B(0,£2) UB(0,1) \ B(0,])

and the equality occurs only when B = B almost everywhere in Q2. In
addition we have

(€2,¢) - (£°,¢") ase - 0.

A. Laurain. “Global minimizer of the ground state for two phase
conductors in low contrast regime.” In: ESAIM Control Optim. Calc.
Var. (To appear)
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Algorithm - general case

Descent Algorithm-general «, g

Variational formulation for A

/ o(B)|[Vul?
AMB) = min {2 min /U(B)|VU|2.
ueH(Q) /Uz ueH(Q),||ull=1 Ja
Q
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Algorithm - general case

Descent Algorithm-general «, g

Variational formulation for A

/ o(B)|[Vul?
AMB) = min {2 min /U(B)|VU|2.
ueH(Q) /Uz ueH(Q),||ull=1 Ja
Q

Descent Algorithm

@ Initial measurable set By, |By| = m.
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Variational formulation for A

/ o(B)|[Vul?
AMB) = min {2 min /U(B)|VU|2.
ueH(Q) /Uz ueH(Q),||ull=1 Ja
Q

Descent Algorithm

@ Initial measurable set By, |By| = m.
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Algorithm - general case

Descent Algorithm-general «, g

Variational formulation for A

/ o(B)|[Vul?
AMB) = min {2 min /U(B)|VU|2.
ueH(Q) /Uz ueH(Q),||ull=1 Ja
Q

v

Descent Algorithm

@ Initial measurable set By, |By| = m.
@ M(By,c) = |{x:|Vug,(x)| < c}|.
@ ¢ :=inf{c: M(By,c) > m}.
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Algorithm - general case

Descent Algorithm-general «, g

Variational formulation for A

/ o(B)|[Vul?
AMB) = min {2 min /J(B)|VU|2.
ueH(Q) /Uz ueH(Q),||ull=1 Ja
Q

v

Descent Algorithm

@ Initial measurable set By, |By| = m.

@ M(By,c) = |{x:|Vug,(x)| < c}|.

@ ¢ :=inf{c: M(By,c) > m}.

@ Under suitable conditions M(By, ¢p) = m.
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Algorithm - general case

Descent Algorithm-general «, g

Variational formulation for A

/ o(B)|[Vul?
AMB) = min {2 min /J(B)|VU|2.
ueH(Q) /Uz ueH(Q),||ull=1 Ja
Q

v

Descent Algorithm

@ Initial measurable set By, |By| = m.

@ M(By,c) = |{x:|Vug,(x)| < c}|.

@ ¢ :=inf{c: M(By,c) > m}.

@ Under suitable conditions M(By, ¢p) = m.
@ Update By = {x : |Vug,(x)| < co}.
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Algorithm - general case

Descent Algorithm-general «, g

A(B1) < A(By); equality holds if and only if By = By a.e. (under extra
hypotheses). If By is optimal, then By = {x : |Vug,(x)| < ¢} a.e.

Corollary
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Algorithm - general case

Descent Algorithm-general «, g

A(B1) < A(By); equality holds if and only if By = By a.e. (under extra
hypotheses). If By is optimal, then By = {x : |Vug,(x)| < ¢} a.e.

Corollary

@ The disk case. 2 = B(0, R), then B* should include the origin.

A. Laurain Shape optimization of the ground state for two-phase conductors



Algorithm - general case

Descent Algorithm-general «, g

A(B1) < A(By); equality holds if and only if By = By a.e. (under extra
hypotheses). If By is optimal, then By = {x : |Vug,(x)| < ¢} a.e.

Corollary

@ The disk case. 2 = B(0, R), then B* should include the origin.

@ The ring case. The gradient of u vanishes on a circle whose
center is the center of the ring. This circle is in the optimal set.
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Algorithm - general case

Descent Algorithm-general «, g

A(B1) < A(By); equality holds if and only if By = By a.e. (under extra
hypotheses). If By is optimal, then By = {x : |Vug,(x)| < ¢} a.e.

Corollary

@ The disk case. 2 = B(0, R), then B* should include the origin.

@ The ring case. The gradient of u vanishes on a circle whose
center is the center of the ring. This circle is in the optimal set.

@ Domains with corners in two dimensions. B* contains a
neighbourhood of the corners with angle smaller than = and
A* = Q\ B* contains a neighbourhood of the corners with angle
greater than .
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Algorithm - general case

The Disk Case

Figure : Initial domain By = B(0, 0.75) (left). Optimal distribution (right).
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Algorithm - general case

The Disk Case

Figure : Initial domain By = B(0, 0.75) (left). Optimal distribution (right).

Thank you for your attention !!
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