Shape optimization of the ground state for two-phase conductors

Antoine Laurain

Technical University of Berlin

joint work with Carlos Conca and Rajesh Mahadevan

EQUADIFF 2013

A. Laurain Shape optimization of the ground state for two-phase conductors

Problem Statement

Find the optimal distribution of two conducting materials A and B of given volume and conductivities α and β in a fixed domain Ω in order to minimize the ground state eigenvalue.

Eigenvalue problem

```
• \Omega \subset \mathbb{R}^d, 0 < \alpha < \beta, 0 < m < |\Omega|
• B \subset \Omega measurable, A = \Omega \setminus B
```

$$-\operatorname{div}(\sigma(B)\nabla u) = \lambda(B)u \text{ in }\Omega$$
$$u = 0 \text{ on } \partial\Omega.$$

σ(B) = αχ_A + βχ_B, (χ_A and χ_B are indicator functions)
λ(B) is the first eigenvalue or ground state.

Shape Optimization Problem

 $\begin{array}{ll} \text{minimize} & \lambda(B) \\ \text{subject to} & B \in \mathcal{B} := \{B \subset \Omega, B \text{ measurable}, |B| = m\} \end{array}$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Eigenvalue problem

- $\Omega \subset \mathbb{R}^d$, $0 < \alpha < \beta$, $0 < m < |\Omega|$
- $B \subset \Omega$ measurable, $A = \Omega \setminus B$

$$-\operatorname{div}(\sigma(B)\nabla u) = \lambda(B)u \text{ in }\Omega$$
$$u = 0 \text{ on }\partial\Omega.$$

σ(B) = αχ_A + βχ_B, (χ_A and χ_B are indicator functions)
 λ(B) is the first eigenvalue or ground state.

Shape Optimization Problem

 $\begin{array}{ll} \text{minimize} & \lambda(B) \\ \text{subject to} & B \in \mathcal{B} := \{B \subset \Omega, B \text{ measurable}, |B| = m\} \end{array}$

イロト イ団ト イヨト イヨト

۲

Eigenvalue problem

• $\Omega \subset \mathbb{R}^d$, $0 < \alpha < \beta$, $0 < m < |\Omega|$

•
$$B \subset \Omega$$
 measurable, $A = \Omega \setminus B$

$$-\operatorname{div}(\sigma(B)\nabla u) = \lambda(B)u \text{ in } \Omega$$
$$u = 0 \text{ on } \partial\Omega.$$

- $\sigma(B) = \alpha \chi_A + \beta \chi_B$, (χ_A and χ_B are indicator functions)
- $\lambda(B)$ is the first eigenvalue or ground state.

Shape Optimization Problem minimize $\lambda(B)$ subject to $B \in \mathcal{B} := \{B \subset \Omega, B \text{ measurable}, |B| = m\}$

۲

Eigenvalue problem

• $\Omega \subset \mathbb{R}^d$, $0 < \alpha < \beta$, $0 < m < |\Omega|$

•
$$B \subset \Omega$$
 measurable, $A = \Omega \setminus B$

$$-\operatorname{div}(\sigma(B)
abla u) = \lambda(B)u$$
 in Ω
 $u = 0$ on $\partial\Omega$.

- $\sigma(B) = \alpha \chi_A + \beta \chi_B$, (χ_A and χ_B are indicator functions)
- $\lambda(B)$ is the first eigenvalue or ground state.

Shape Optimization Problem

 $\begin{array}{ll} \mbox{minimize} & \lambda({\it B}) \\ \mbox{subject to} & {\it B} \in {\cal B} := \{{\it B} \subset \Omega, {\it B} \mbox{ measurable}, |{\it B}| = m\} \end{array}$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Existence

- Open question for general geometries of Ω.
- Existence of relaxed solutions:
- -> Steven Cox and Robert Lipton (1996). "Extremal eigenvalue problems for two-phase conductors." In: Arch. Rational Mech. Anal. 136.2, pp. 101–117
- Existence of a radially symmetric solution when Ω is a ball.
- -> A. Alvino, G. Trombetti, and P.-L. Lions (1989). "On optimization problems with prescribed rearrangements." In: *Nonlinear Anal.* 13.2, pp. 185–220
- -> Carlos Conca, Rajesh Mahadevan, and León Sanz (2009). "An extremal eigenvalue problem for a two-phase conductor in a ball." In: Appl. Math. Optim. 60, pp. 173–184

< □ > < 同 > < 回 > < 回

Existence

- Open question for general geometries of Ω.
- Existence of relaxed solutions:
- -> Steven Cox and Robert Lipton (1996). "Extremal eigenvalue problems for two-phase conductors." In: Arch. Rational Mech. Anal. 136.2, pp. 101–117
- Existence of a radially symmetric solution when Ω is a ball.
- -> A. Alvino, G. Trombetti, and P.-L. Lions (1989). "On optimization problems with prescribed rearrangements." In: *Nonlinear Anal.* 13.2, pp. 185–220
- -> Carlos Conca, Rajesh Mahadevan, and León Sanz (2009). "An extremal eigenvalue problem for a two-phase conductor in a ball." In: Appl. Math. Optim. 60, pp. 173–184

Existence

- Open question for general geometries of Ω.
- Existence of relaxed solutions:
- -> Steven Cox and Robert Lipton (1996). "Extremal eigenvalue problems for two-phase conductors." In: Arch. Rational Mech. Anal. 136.2, pp. 101–117
- Existence of a radially symmetric solution when Ω is a ball.
- -> A. Alvino, G. Trombetti, and P.-L. Lions (1989). "On optimization problems with prescribed rearrangements." In: *Nonlinear Anal.* 13.2, pp. 185–220
- -> Carlos Conca, Rajesh Mahadevan, and León Sanz (2009). "An extremal eigenvalue problem for a two-phase conductor in a ball." In: Appl. Math. Optim. 60, pp. 173–184

Existence

- Open question for general geometries of Ω.
- Existence of relaxed solutions:
- -> Steven Cox and Robert Lipton (1996). "Extremal eigenvalue problems for two-phase conductors." In: Arch. Rational Mech. Anal. 136.2, pp. 101–117
- Existence of a radially symmetric solution when Ω is a ball.
- -> A. Alvino, G. Trombetti, and P.-L. Lions (1989). "On optimization problems with prescribed rearrangements." In: *Nonlinear Anal.* 13.2, pp. 185–220
- -> Carlos Conca, Rajesh Mahadevan, and León Sanz (2009). "An extremal eigenvalue problem for a two-phase conductor in a ball." In: *Appl. Math. Optim.* 60, pp. 173–184

Existence

- Open question for general geometries of Ω.
- Existence of relaxed solutions:
- -> Steven Cox and Robert Lipton (1996). "Extremal eigenvalue problems for two-phase conductors." In: Arch. Rational Mech. Anal. 136.2, pp. 101–117
- Existence of a radially symmetric solution when Ω is a ball.
- -> A. Alvino, G. Trombetti, and P.-L. Lions (1989). "On optimization problems with prescribed rearrangements." In: *Nonlinear Anal.* 13.2, pp. 185–220
- -> Carlos Conca, Rajesh Mahadevan, and León Sanz (2009). "An extremal eigenvalue problem for a two-phase conductor in a ball." In: *Appl. Math. Optim.* 60, pp. 173–184

Characterization of minimizers

Can we find some explicit solutions?

- The problem is solved explicitly in 1D.
- -> M. G. Krein (1955). "On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability." In: *Amer. Math. Soc. Transl. (2)* 1, pp. 163–187

Conjecture (Conca et al., Dambrine)

• When $\Omega \subset \mathbb{R}^d$ is a ball, the minimizer is also a ball:

$$B^* = B(0, r^*) = \operatorname*{argmin}_{B \in \mathcal{B}} \lambda(B)$$

Solution in a particular case

We exhibit global minimizers in low contrast regime.

• • • • • • • • • • • •

Characterization of minimizers

Can we find some explicit solutions?

The problem is solved explicitly in 1D.

-> M. G. Krein (1955). "On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability." In: *Amer. Math. Soc. Transl. (2)* 1, pp. 163–187

Conjecture (Conca et al., Dambrine)

• When $\Omega \subset \mathbb{R}^d$ is a ball, the minimizer is also a ball:

$$B^* = B(0, r^*) = \operatorname*{argmin}_{B \in \mathcal{B}} \lambda(B)$$

Solution in a particular case

We exhibit global minimizers in low contrast regime.

Characterization of minimizers

Can we find some explicit solutions?

- The problem is solved explicitely in 1D.
- -> M. G. Krein (1955). "On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability." In: *Amer. Math. Soc. Transl. (2)* 1, pp. 163–187

Conjecture (Conca et al., Dambrine)

• When $\Omega \subset \mathbb{R}^d$ is a ball, the minimizer is also a ball:

$$B^* = B(0, r^*) = \operatorname*{argmin}_{B \in \mathcal{B}} \lambda(B)$$

-> We prove that this conjecture is not true!

Solution in a particular case

We exhibit global minimizers in low contrast regime.

Characterization of minimizers

Can we find some explicit solutions?

- The problem is solved explicitely in 1D.
- -> M. G. Krein (1955). "On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability." In: *Amer. Math. Soc. Transl. (2)* 1, pp. 163–187

Conjecture (Conca et al., Dambrine)

• When $\Omega \subset \mathbb{R}^d$ is a ball, the minimizer is also a ball:

$$B^* = B(0, r^*) = \operatorname*{argmin}_{B \in \mathcal{B}} \lambda(B)$$

-> We prove that this conjecture is not true!

Solution in a particular case

We exhibit global minimizers in low contrast regime.

Asymptotic Expansion

- Low contrast regime: $\beta = \alpha + \varepsilon$ with $\varepsilon > 0$ small.
- Conductivity $\sigma^{\varepsilon} = \alpha + \varepsilon \chi_B$

Theorem (Rellich)

The first eigenvalue λ^{ε} of

$$-\operatorname{div}(\sigma^{\varepsilon}\nabla u^{\varepsilon}) = \lambda^{\varepsilon} u^{\varepsilon} \text{ in } \Omega,$$
$$u^{\varepsilon} = 0 \text{ on } \partial\Omega,$$

is an analytic function of ε in a neighbourhood of $\varepsilon = 0$ and the positive eigenfunction u^{ε} satisfying

$$\int_{\Omega} (u^{\varepsilon})^2 = 1$$

is analytic with respect to ε .

• • • • • • • • • • • •

Asymptotic Expansion

- Low contrast regime: $\beta = \alpha + \varepsilon$ with $\varepsilon > 0$ small.
- Conductivity $\sigma^{\varepsilon} = \alpha + \varepsilon \chi_B$

Theorem (Rellich)

The first eigenvalue λ^{ε} of

$$-\operatorname{div}(\sigma^{\varepsilon}\nabla u^{\varepsilon}) = \lambda^{\varepsilon} u^{\varepsilon} \quad \text{in } \Omega,$$
$$u^{\varepsilon} = 0 \quad \text{on } \partial\Omega,$$

is an analytic function of ε in a neighbourhood of $\varepsilon = 0$ and the positive eigenfunction u^{ε} satisfying

$$\int_{\Omega} (u^{\varepsilon})^2 = 1$$

is analytic with respect to ε .

A D b 4 A b

Asymptotic Expansion

We plug the following ansätze:

$$u^{\varepsilon} = v_0 + \varepsilon v_1 + \dots,$$

$$\lambda^{\varepsilon} = \lambda_0 + \varepsilon \lambda_1 + \dots,$$

in $-\operatorname{div}(\sigma^{\varepsilon}\nabla u^{\varepsilon}) = \lambda^{\varepsilon}$ and $u^{\varepsilon} = 0$. Gather terms of similar order in ε :

$$-\operatorname{div}(\alpha \nabla v_0) = \lambda_0 v_0 \text{ in } \Omega, \qquad (2.1)$$

$$v_0 = 0 \text{ on } \partial \Omega.$$
 (2.2)

$$-\operatorname{div}(\alpha \nabla v_1) - \lambda_0 v_1 = \operatorname{div}(\chi_B \nabla v_0) + \lambda_1 v_0 \text{ in } \Omega, \qquad (2.3)$$
$$v_1 = 0 \text{ on } \partial \Omega. \qquad (2.4)$$

(2.3)-(2.4) has a solution if and only if (Fredholm alternative)

$$\int_{\Omega} \operatorname{div}(\chi_B \nabla v_0) v_0 + \lambda_1 \int_{\Omega} v_0^2 = 0.$$

Asymptotic Expansion

Using $\int_{\Omega} v_0^2 = 1$ we obtain

$$\lambda_1 = -\int_{\Omega} \operatorname{div}(\chi_B \nabla v_0) v_0 \implies \lambda_1 = \lambda_1(B) = \int_B |\nabla v_0|^2.$$

Theorem

If $B^{\star}_{\varepsilon} \in \mathcal{B}$ is a minimizer of $\lambda^{\varepsilon}(\cdot)$ then:

$$\left|\lambda_1(B_{\varepsilon}^{\star}) - \inf_{B \in \mathcal{B}} \lambda_1(B)\right| \leq C \varepsilon^{\frac{1}{2}}.$$

A (10) A (10)

Optimality conditions

Theorem

- There exists c* ≥ 0 such that whenever B is a measurable subset of Ω satisfying
 - $\{x: |\nabla v_0(x)| < c^*\} \subset B \subset \{x: |\nabla v_0(x)| \le c^*\}$

and |B| = m, then B is a solution for the problem of minimizing $\lambda_1(B)$ over $B \in \mathcal{B}$.

If {x : |∇v₀(x)| = c*} is of measure zero, then the unique solution (up to a set of measure zero) is the set

$$B^* = \{x : |\nabla v_0(x)| < c^*\}.$$

This is the case if Ω is a disk.

• $\Omega = \mathbb{B}(0, 1)$ in 2D or 3D

• The solution of $-\operatorname{div}(\alpha \nabla v_0) = \lambda_0 v_0$ in Ω and $v_0 = 0$ on $\partial \Omega$ is radial: $v_0(x) = w(|x|)$

$$r^{2}w_{0}^{\prime\prime}(r) + (d-1)rw_{0}^{\prime}(r) + r^{2}\frac{\lambda_{0}}{\alpha}w_{0}(r) = 0,$$

$$w_{0}^{\prime}(0) = 0, \ w_{0}(1) = 0.$$

• In 2D, $w_0(r) = J_0(\eta_d r)$ where J_0 is the Bessel function of the first kind and η_d is its first zero.

伺 ト イ ヨ ト イ ヨ

• $\Omega = \mathbb{B}(0, 1)$ in 2D or 3D

• The solution of $-\operatorname{div}(\alpha \nabla v_0) = \lambda_0 v_0$ in Ω and $v_0 = 0$ on $\partial \Omega$ is radial: $v_0(x) = w(|x|)$

$$r^{2}w_{0}''(r) + (d-1)rw_{0}'(r) + r^{2}\frac{\lambda_{0}}{\alpha}w_{0}(r) = 0,$$

$$w_{0}'(0) = 0, \ w_{0}(1) = 0.$$

• In 2D, $w_0(r) = J_0(\eta_d r)$ where J_0 is the Bessel function of the first kind and η_d is its first zero.

🗇 🕨 🔺 🖻 🕨 🔺 🖻

$$\begin{aligned} |\nabla v_0|^2(x) &= (w_1(r))^2 := (-w_0'(r))^2 \text{ and the solution is:} \\ \lambda_1(B) &= \int_B |\nabla v_0|^2 \Longrightarrow B^* = \{x : w_1(r) < c^*\} \end{aligned}$$

where c^* is such that $|B^*| = m$.

Figure : $w_0(r)$ (red), and $w_1(r) := -w'_0(r)$ (green) in dimensions d = 2 (left) and d = 3 (right), w_1 increasing on $[0, r_d^1]$ and decreasing on $[r_d^1, 1]$, and r_d^0 is such that $w_1(r_d^0) = w_1(1)$.

伺 ト イ ヨ ト イ ヨ

Theorem

The solution $B^* = \min_{B \in \mathcal{B}} \lambda_1(B)$ is of two possible types. There exists $\overline{m} = \omega_d (r_d^0)^d$ such that

- Type I: If $m \leq \overline{m}$ then $B^* = B(0, (m/\omega_d)^{1/d})$ or,
- Type II: If $m > \overline{m}$ then there exists ξ^0 and ξ^1 with $(m/\omega_d)^{1/d} < \xi^0 < \xi^1 < 1$ such that

$$B^* = B(0, \xi^0) \cup \left(B(0, 1) \setminus \overline{B(0, \xi^1)}
ight)$$

Theorem

When $\Omega = B(0, 1)$, for $\beta = \alpha + \varepsilon$ sufficiently close to α and $m > \overline{m}$, $B = \mathbb{B}(0, r^*)$ does not minimize $\lambda^{\varepsilon}(B)$ in \mathcal{B} .

Low contrast regime - other geometries

Figure : Optimal distribution of the material *B* (black) and *A* (white) when Ω is a square in low contrast regime. The set *B* contains the corners and the center. $m/|\Omega| \approx 14\%$.

Low contrast regime - other geometries

Figure : Optimal distribution of the material *B* (black) and *A* (white) when Ω is a polygon in low contrast regime. The set *A* contains the reentrant corner. $m/|\Omega| \approx 34\%$.

Low contrast regime - other geometries

Figure : Optimal distribution of the material *B* (red) and *A* (yellow) when Ω is a ring in low contrast regime. The set *B* is also a ring. $m/|\Omega| \approx 17\%$.

C. Conca, A. Laurain, and R. Mahadevan (2012). "Minimization of the Ground State for Two Phase Conductors in Low Contrast Regime." In: *SIAM Journal on Applied Mathematics* 72.4, pp. 1238–1259

Global optimum in low contrast regime

- We want to prove that $B^* = \operatorname{argmin} \lambda_1(B)$ is also a minimizer of $\lambda^{\varepsilon}(B)$ for small ε .
- We have found minimizers of λ₁(B) but not of λ^ε(B), it was enough to disprove the conjecture.
- The minimizer B_ε = argmin λ^ε(B) does not necessarily converge as ε → 0.
- If it does, B_{ε} does not necessarily converge to $B^* = \operatorname{argmin} \lambda_1(B)$.
- We need to prove first B_ε → B^{*} in an appropriate sense. The convergence of B_ε is linked to the convergence ∇u_ε → ∇u₀. We need a convergence of ∇u_ε stronger than just L².

L^{∞} -convergence of the gradient

Theorem (arbitrary Ω)

For $\varepsilon > 0$ small, there exists c independent of ε and B such that

$$\|u_{\varepsilon}(B)-u_0\|_{H^1_0(\Omega)}\leq c\, arepsilon^{rac{1}{2}}\qquad orall B\in \mathcal{B}\,.$$

Theorem (case $\Omega = \mathbb{B}(0, 1)$)

Assume $\Omega = \mathbb{B}(0, 1)$ and *B* is radially symmetric. The functions u_{ε} and u_0 are in $W^{1,\infty}(\Omega)$ and there exists $\varepsilon_0 > 0$ such that for all $\varepsilon < \varepsilon_0$,

$$\|\nabla u_{\varepsilon} - \nabla u_0\|_{L^{\infty}(\Omega)} \leq c\sqrt{\varepsilon}.$$

Idea of the proof: the radial symmetry brings additional regularity, and use Hardy's inequality.

• • • • • • • • • • • •

Quasi-optimal sets

Theorem

Let

$$r^* = (m/\omega_d)^{1/d}, \qquad \omega_d = |\mathbb{B}(0,1)|.$$

Let $B \subset \Omega$ be a radially symmetric measurable set and $m < \overline{m}$. For all $\delta > 0$, there exists $\varepsilon_0 = \varepsilon_0(\delta) > 0$ and B^*_{δ} radially symmetric and containing the origin such that for all $0 < \varepsilon \leq \varepsilon_0(\delta)$ we have

 $\lambda^{\varepsilon}\lambda^{\varepsilon}(\boldsymbol{B}^*_{\delta}) \leq \lambda^{\varepsilon}(\boldsymbol{B}) \qquad |\boldsymbol{B}^*_{\delta}| = m,$

and

$$\mathbb{B}(\mathbf{0}, \mathbf{r}^* - \delta) \subset \mathbf{B}^*_{\delta} \subset \mathbb{B}(\mathbf{0}, \mathbf{r}^* + \delta)$$

Idea of the proof: use $\|\nabla u_{\varepsilon} - \nabla u_0\|_{L^{\infty}(\Omega)} \leq c\sqrt{\varepsilon}$ and threshold.

Global optimum in low contrast regime

• Goal: prove the existence of $\varepsilon_0 > 0$ such that

 $\lambda^{\varepsilon}(B^*) \leq \lambda^{\varepsilon}(B),$

for all $B \in \mathcal{B}$ and $\varepsilon \leq \varepsilon_0$, where $B^* = \mathbb{B}(0, r^*)$.

Fact: for all ε > 0 there exists a δ(ε) > 0 such that

 $\lambda^{\varepsilon}(B^*_{\delta(\varepsilon)}) \leq \lambda^{\varepsilon}(B)$

holds with $\delta(\varepsilon) \to 0$ as $\varepsilon \to 0$ and $\delta(\varepsilon)$ strictly increasing.

• We need: the other inequality

 $\lambda^{\varepsilon}(\boldsymbol{B}^*) \leq \lambda^{\varepsilon}(\boldsymbol{B}^*_{\delta(\varepsilon)}).$

- $B^*_{\delta(\varepsilon)}$ is "close" to B^* , otherwise no information.
- It is just enough to perform an asymptotic expansion of the eigenvalue with respect to δ(ε).

Global optimum in low contrast regime

• We prove: For all $0 < \varepsilon \leq \varepsilon_0$ and $0 < \delta \leq \delta_0$ we have

 $\lambda^{\varepsilon}(\boldsymbol{B}^*) \leq \lambda^{\varepsilon}(\boldsymbol{B}_{\delta}),$

where B_{δ} is any radially symmetric set satisfying

$$\mathbb{B}(\mathbf{0}, \mathbf{r}^* - \delta) \subset \mathbf{B}_{\delta} \subset \mathbb{B}(\mathbf{0}, \mathbf{r}^* + \delta).$$

• Choose $B_{\delta} = B^*_{\delta(\varepsilon)}$ for ε small enough

 $\lambda^{\varepsilon}(\boldsymbol{B}^*) \leq \lambda^{\varepsilon}(\boldsymbol{B}_{\delta}) = \lambda^{\varepsilon}(\boldsymbol{B}^*_{\delta(\varepsilon)}) \leq \lambda^{\varepsilon}(\boldsymbol{B}),$

Idea of the proof: find an expansion with ρ(δ) > 0

$$\lambda^arepsilon(oldsymbol{B}_\delta)=\lambda^arepsilon(oldsymbol{B}^*)+
ho(\delta)ar\lambda^arepsilon+\mathcal{R}(arepsilon,\delta) ext{ as }
ho(\delta) o 0$$

and $\mathcal{R}(\varepsilon, \delta)/\rho(\delta) \to 0$ uniformly as $(\delta, \varepsilon) \to 0$. Prove then that $\bar{\lambda}^{\varepsilon} \ge 0$.

Global optimum in low contrast regime - type I

Theorem

If $m < \overline{m}$ there exists $\varepsilon_0 > 0$ such that for all $B \in \mathcal{B}$ we have

 $\lambda^{\varepsilon}(B^*) \leq \lambda^{\varepsilon}(B)$ for all $0 < \varepsilon < \varepsilon_0$

and the equality occurs only when $B = B^*$ almost everywhere in Ω .

Global optimum in low contrast regime - type II

Theorem

If $m > \overline{m}$ there exists $\varepsilon_0 > 0$ such that for all $B \in \mathcal{B}$ and for all $0 < \varepsilon < \varepsilon_0$ there exists $\xi_{\varepsilon}^0, \xi_{\varepsilon}^1$ such that

 $\lambda^{\varepsilon}(B^*_{\varepsilon}) \leq \lambda^{\varepsilon}(B)$

where

$$oldsymbol{B}^*_arepsilon = \mathbb{B}(\mathbf{0},\xi^{\mathbf{0}}_arepsilon) \cup \mathbb{B}(\mathbf{0},\mathbf{1}) \setminus \overline{\mathbb{B}(\mathbf{0},\xi^{\mathbf{1}}_arepsilon)}$$

and the equality occurs only when $B = B_{\varepsilon}^*$ almost everywhere in Ω . In addition we have

$$(\xi_{\varepsilon}^{0},\xi_{\varepsilon}^{1}) \rightarrow (\xi^{0},\xi^{1})$$
 as $\varepsilon \rightarrow 0$.

A. Laurain. "Global minimizer of the ground state for two phase conductors in low contrast regime." In: *ESAIM Control Optim. Calc. Var.* (To appear)

• • • • • • • • • • • •

Variational formulation for λ

$$\lambda(B) = \min_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} \sigma(B) |\nabla u|^2}{\int_{\Omega} u^2} = \min_{u \in H_0^1(\Omega), ||u||_2 = 1} \int_{\Omega} \sigma(B) |\nabla u|^2.$$

Descent Algorithm

• Initial measurable set B_0 , $|B_0| = m$.

•
$$\mathcal{M}(B_0, c) := |\{x : |\nabla u_{B_0}(x)| \le c\}|.$$

•
$$c_0 := \inf\{c : \mathcal{M}(B_0, c) \geq m\}.$$

• Under suitable conditions $\mathcal{M}(B_0, c_0) = m$.

• Update
$$B_1 = \{x : |\nabla u_{B_0}(x)| \le c_0\}$$
.

イロト イ団ト イヨト イヨトー

Variational formulation for λ

$$\lambda(B) = \min_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} \sigma(B) |\nabla u|^2}{\int_{\Omega} u^2} = \min_{u \in H_0^1(\Omega), ||u||_2 = 1} \int_{\Omega} \sigma(B) |\nabla u|^2.$$

Descent Algorithm

- Initial measurable set B_0 , $|B_0| = m$.
- $\mathcal{M}(B_0, c) := |\{x : |\nabla u_{B_0}(x)| \le c\}|.$
- $c_0 := \inf\{c : \mathcal{M}(B_0, c) \ge m\}.$
- Under suitable conditions $\mathcal{M}(B_0, c_0) = m$.
- Update $B_1 = \{x : |\nabla u_{B_0}(x)| \le c_0\}.$

A (10) > A (10) > A

Variational formulation for λ

$$\lambda(B) = \min_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} \sigma(B) |\nabla u|^2}{\int_{\Omega} u^2} = \min_{u \in H_0^1(\Omega), ||u||_2 = 1} \int_{\Omega} \sigma(B) |\nabla u|^2.$$

Descent Algorithm

• Initial measurable set B_0 , $|B_0| = m$.

•
$$\mathcal{M}(B_0, c) := |\{x : |\nabla u_{B_0}(x)| \le c\}|.$$

•
$$c_0 := \inf\{c : \mathcal{M}(B_0, c) \ge m\}.$$

• Under suitable conditions $\mathcal{M}(B_0, c_0) = m$.

• Update
$$B_1 = \{x : |\nabla u_{B_0}(x)| \le c_0\}.$$

Variational formulation for λ

$$\lambda(B) = \min_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} \sigma(B) |\nabla u|^2}{\int_{\Omega} u^2} = \min_{u \in H_0^1(\Omega), ||u||_2 = 1} \int_{\Omega} \sigma(B) |\nabla u|^2.$$

Descent Algorithm

- Initial measurable set B_0 , $|B_0| = m$.
- $\mathcal{M}(B_0, c) := |\{x : |\nabla u_{B_0}(x)| \le c\}|.$
- $c_0 := \inf\{c : \mathcal{M}(B_0, c) \ge m\}.$
- Under suitable conditions $\mathcal{M}(B_0, c_0) = m$.
- Update $B_1 = \{x : |\nabla u_{B_0}(x)| \le c_0\}.$

A (10) > A (10) > A (10)

Variational formulation for λ

$$\lambda(B) = \min_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} \sigma(B) |\nabla u|^2}{\int_{\Omega} u^2} = \min_{u \in H_0^1(\Omega), ||u||_2 = 1} \int_{\Omega} \sigma(B) |\nabla u|^2.$$

Descent Algorithm

- Initial measurable set B_0 , $|B_0| = m$.
- $\mathcal{M}(B_0, c) := |\{x : |\nabla u_{B_0}(x)| \le c\}|.$
- $c_0 := \inf\{c : \mathcal{M}(B_0, c) \ge m\}.$
- Under suitable conditions $\mathcal{M}(B_0, c_0) = m$.

• Update $B_1 = \{x : |\nabla u_{B_0}(x)| \le c_0\}.$

A (1) > A (1) > A

Variational formulation for λ

$$\lambda(B) = \min_{u \in H_0^1(\Omega)} \frac{\int_{\Omega} \sigma(B) |\nabla u|^2}{\int_{\Omega} u^2} = \min_{u \in H_0^1(\Omega), ||u||_2 = 1} \int_{\Omega} \sigma(B) |\nabla u|^2.$$

Descent Algorithm

- Initial measurable set B_0 , $|B_0| = m$.
- $\mathcal{M}(B_0, c) := |\{x : |\nabla u_{B_0}(x)| \le c\}|.$
- $c_0 := \inf\{c : \mathcal{M}(B_0, c) \ge m\}.$
- Under suitable conditions $\mathcal{M}(B_0, c_0) = m$.
- Update $B_1 = \{x : |\nabla u_{B_0}(x)| \le c_0\}.$

Theorem

 $\lambda(B_1) \leq \lambda(B_0)$; equality holds if and only if $B_1 = B_0$ a.e. (under extra hypotheses). If B_0 is optimal, then $B_0 = \{x : |\nabla u_{B_0}(x)| \leq c_0\}$ a.e.

Corollary

- The disk case. $\Omega = \mathbb{B}(0, R)$, then B^* should include the origin.
- The ring case. The gradient of u vanishes on a circle whose center is the center of the ring. This circle is in the optimal set.
- Domains with corners in two dimensions. B* contains a neighbourhood of the corners with angle smaller than π and A* = Ω \ B* contains a neighbourhood of the corners with angle greater than π.

Theorem

 $\lambda(B_1) \leq \lambda(B_0)$; equality holds if and only if $B_1 = B_0$ a.e. (under extra hypotheses). If B_0 is optimal, then $B_0 = \{x : |\nabla u_{B_0}(x)| \leq c_0\}$ a.e.

Corollary

- The disk case. $\Omega = \mathbb{B}(0, R)$, then B^* should include the origin.
- The ring case. The gradient of u vanishes on a circle whose center is the center of the ring. This circle is in the optimal set.
- Domains with corners in two dimensions. B* contains a neighbourhood of the corners with angle smaller than π and A* = Ω \ B* contains a neighbourhood of the corners with angle greater than π.

Theorem

 $\lambda(B_1) \leq \lambda(B_0)$; equality holds if and only if $B_1 = B_0$ a.e. (under extra hypotheses). If B_0 is optimal, then $B_0 = \{x : |\nabla u_{B_0}(x)| \leq c_0\}$ a.e.

Corollary

- The disk case. $\Omega = \mathbb{B}(0, R)$, then B^* should include the origin.
- **The ring case.** The gradient of u vanishes on a circle whose center is the center of the ring. This circle is in the optimal set.
- Domains with corners in two dimensions. B* contains a neighbourhood of the corners with angle smaller than π and A* = Ω \ B* contains a neighbourhood of the corners with angle greater than π.

Theorem

 $\lambda(B_1) \leq \lambda(B_0)$; equality holds if and only if $B_1 = B_0$ a.e. (under extra hypotheses). If B_0 is optimal, then $B_0 = \{x : |\nabla u_{B_0}(x)| \leq c_0\}$ a.e.

Corollary

- The disk case. $\Omega = \mathbb{B}(0, R)$, then B^* should include the origin.
- **The ring case.** The gradient of u vanishes on a circle whose center is the center of the ring. This circle is in the optimal set.
- Domains with corners in two dimensions. B* contains a neighbourhood of the corners with angle smaller than π and A* = Ω \ B* contains a neighbourhood of the corners with angle greater than π.

Figure : Initial domain $B_0 = \mathcal{B}(0, 0.75)$ (left). Optimal distribution (right).

Figure : Initial domain $B_0 = \mathcal{B}(0, 0.75)$ (left). Optimal distribution (right).

Thank you for your attention !!