Shape optimization of the ground state for two-phase conductors

Antoine Laurain

Technical University of Berlin
joint work with Carlos Conca and Rajesh Mahadevan

EQUADIFF 2013

Problem Statement

Find the optimal distribution of two conducting materials A and B of given volume and conductivities α and β in a fixed domain Ω in order to minimize the ground state eigenvalue.

Problem setting

Eigenvalue problem

- $\Omega \subset \mathbb{R}^{d}, \quad 0<\alpha<\beta, \quad 0<m<|\Omega|$
- $B \subset \Omega$ measurable, $A=\Omega \backslash B$

$$
-\operatorname{div}(\sigma(B) \nabla u)=\lambda(B) u \text { in } \Omega
$$

$$
u=0 \text { on } \partial \Omega
$$

- $\sigma(B)=\alpha \chi_{A}+\beta \chi_{B},\left(\chi_{A}\right.$ and χ_{B} are indicator functions)
- $\lambda(B)$ is the first eigenvalue or around state.

Shape Optimization Problem

Problem setting

Eigenvalue problem

- $\Omega \subset \mathbb{R}^{d}, \quad 0<\alpha<\beta, \quad 0<m<|\Omega|$
- $B \subset \Omega$ measurable, $\quad A=\Omega \backslash B$

$$
\begin{aligned}
-\operatorname{div}(\sigma(B) \nabla u) & =\lambda(B) u \text { in } \Omega \\
u & =0 \text { on } \partial \Omega .
\end{aligned}
$$

- $\sigma(B)=\alpha \chi_{A}+\beta \chi_{B},\left(\chi_{A}\right.$ and χ_{B} are indicator functions)
- $\lambda(B)$ is the first eigenvalue or around state.

Shape Optimization Problem

Problem setting

Eigenvalue problem

- $\Omega \subset \mathbb{R}^{d}, \quad 0<\alpha<\beta, \quad 0<m<|\Omega|$
- $B \subset \Omega$ measurable, $A=\Omega \backslash B$
-

$$
\begin{aligned}
-\operatorname{div}(\sigma(B) \nabla u) & =\lambda(B) u \text { in } \Omega \\
u & =0 \text { on } \partial \Omega .
\end{aligned}
$$

- $\sigma(B)=\alpha \chi_{A}+\beta \chi_{B},\left(\chi_{A}\right.$ and χ_{B} are indicator functions $)$
- $\lambda(B)$ is the first eigenvalue or ground state.

Shape Optimization Problem

minimize $\quad \lambda(B)$
subject to $\quad B \in \mathcal{B}:=\{B \subset \Omega, B$ measurable, $|B|=m\}$

Problem setting

Eigenvalue problem

- $\Omega \subset \mathbb{R}^{d}, \quad 0<\alpha<\beta, \quad 0<m<|\Omega|$
- $B \subset \Omega$ measurable, $A=\Omega \backslash B$
-

$$
\begin{aligned}
-\operatorname{div}(\sigma(B) \nabla u) & =\lambda(B) u \text { in } \Omega \\
u & =0 \text { on } \partial \Omega .
\end{aligned}
$$

- $\sigma(B)=\alpha \chi_{A}+\beta \chi_{B},\left(\chi_{A}\right.$ and χ_{B} are indicator functions $)$
- $\lambda(B)$ is the first eigenvalue or ground state.

Shape Optimization Problem

minimize $\quad \lambda(B)$
subject to $\quad B \in \mathcal{B}:=\{B \subset \Omega, B$ measurable, $|B|=m\}$

Known results

Existence

- Open question for general geometries of Ω.
- Existence of relaxed solutions:
> Steven Cox and Robert Lipton (1996). "Extremal eigenvalue problems for two-phase conductors."
Anal. 136.2, pp. 101-117
- Existence of a radially symmetric solution when Ω is a ball.
\rightarrow A. Alvino. G. Trombetti, and P.-L. Lions (1989). "On optimization problems with prescribed rearrangements." In: Nonlinear Anal. 13.2, pp. 185-220
- Carloc Conea Raiech Mahadevan, and León Sanz (2009). "An extremal eigenvalue problem for a two-phase conductor in a ball." In: Appl. Math. Optim. 60, pp. 173-184

Known results

Existence

- Open question for general geometries of Ω.
- Existence of relaxed solutions:
-> Steven Cox and Robert Lipton (1996). "Extremal eigenvalue problems for two-phase conductors." In: Arch. Rational Mech. Anal. 136.2, pp. 101-117
- Existence of a radially symmetric solution when Ω is a ball. A. Alvino, G. Trombetti, and P.-L. Lions (1989). "On optimization problems with prescribed rearrangements."

Carlos Conca, Rajesh Mahadevan, and León Sanz (2009). "An extremal eigenvalue problem for a two-phase conductor in a ball.

Known results

Existence

- Open question for general geometries of Ω.
- Existence of relaxed solutions:
-> Steven Cox and Robert Lipton (1996). "Extremal eigenvalue problems for two-phase conductors." In: Arch. Rational Mech. Anal. 136.2, pp. 101-117
- Existence of a radially symmetric solution when Ω is a ball.
A. Alvino, G. Trombetti, and P.-L. Lions (1989). "On optimization problems with prescribed rearrangements."

Carlos Conca, Rajesh Mahadevan, and León Sanz (2009). "An extremal eigenvalue problem for a two-phase conductor in a ball."

Known results

Existence

- Open question for general geometries of Ω.
- Existence of relaxed solutions:
-> Steven Cox and Robert Lipton (1996). "Extremal eigenvalue problems for two-phase conductors." In: Arch. Rational Mech. Anal. 136.2, pp. 101-117
- Existence of a radially symmetric solution when Ω is a ball.
-> A. Alvino, G. Trombetti, and P.-L. Lions (1989). "On optimization problems with prescribed rearrangements." In: Nonlinear Anal. 13.2, pp. 185-220

Carlos Conca, Rajesh Mahadevan, and León Sanz (2009). "An extremal eigenvalue problem for a two-phase conductor in a ball."

Known results

Existence

- Open question for general geometries of Ω.
- Existence of relaxed solutions:
-> Steven Cox and Robert Lipton (1996). "Extremal eigenvalue problems for two-phase conductors." In: Arch. Rational Mech. Anal. 136.2, pp. 101-117
- Existence of a radially symmetric solution when Ω is a ball.
-> A. Alvino, G. Trombetti, and P.-L. Lions (1989). "On optimization problems with prescribed rearrangements." In: Nonlinear Anal. 13.2, pp. 185-220
-> Carlos Conca, Rajesh Mahadevan, and León Sanz (2009). "An extremal eigenvalue problem for a two-phase conductor in a ball." In: Appl. Math. Optim. 60, pp. 173-184

Characterization of minimizers

Can we find some explicit solutions?

- The problem is solved explicitely in 1D.
-> M. G. Krein (1955). "On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability." In: Amer. Math. Soc. Transl. (2) 1, pp. 163-187

Conjecture (Conca et al., Dambrine)

[^0]
Characterization of minimizers

Can we find some explicit solutions?

- The problem is solved explicitely in 1D.
-> M. G. Krein (1955). "On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability." In: Amer. Math. Soc. Transl. (2) 1, pp. 163-187

Conjecture (Conca et al., Dambrine)

- When $\Omega \subset \mathbb{R}^{d}$ is a ball, the minimizer is also a ball:

$$
B^{*}=B\left(0, r^{*}\right)=\underset{B \in \mathcal{B}}{\operatorname{argmin}} \lambda(B)
$$

Solution in a particular case

We exhibit global minimizers in low contrast regime

Characterization of minimizers

Can we find some explicit solutions?

- The problem is solved explicitely in 1D.
-> M. G. Krein (1955). "On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability." In: Amer. Math. Soc. Transl. (2) 1, pp. 163-187

Conjecture (Conca et al., Dambrine)

- When $\Omega \subset \mathbb{R}^{d}$ is a ball, the minimizer is also a ball:

$$
B^{*}=B\left(0, r^{*}\right)=\underset{B \in \mathcal{B}}{\operatorname{argmin}} \lambda(B)
$$

-> We prove that this conjecture is not true!

[^1]
Characterization of minimizers

Can we find some explicit solutions?

- The problem is solved explicitely in 1D.
-> M. G. Krein (1955). "On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability." In: Amer. Math. Soc. Transl. (2) 1, pp. 163-187

Conjecture (Conca et al., Dambrine)

- When $\Omega \subset \mathbb{R}^{d}$ is a ball, the minimizer is also a ball:

$$
B^{*}=B\left(0, r^{*}\right)=\underset{B \in \mathcal{B}}{\operatorname{argmin}} \lambda(B)
$$

-> We prove that this conjecture is not true!

Solution in a particular case
We exhibit global minimizers in low contrast regime.

Asymptotic Expansion

- Low contrast regime: $\beta=\alpha+\varepsilon$ with $\varepsilon>0$ small.
- Conductivity $\sigma^{\varepsilon}=\alpha+\varepsilon \chi_{B}$

Theorem (Relich)

The first eigenvalue λ^{ε} of

is an analytic function of ε in a neighbourhood of $\varepsilon=0$ and the positive eigenfunction u^{ε} satisfying

$$
\int_{\Omega}\left(u^{\varepsilon}\right)^{2}=1
$$

is analytic with respect to

Asymptotic Expansion

- Low contrast regime: $\beta=\alpha+\varepsilon$ with $\varepsilon>0$ small.
- Conductivity $\sigma^{\varepsilon}=\alpha+\varepsilon \chi_{B}$

Theorem (Rellich)

The first eigenvalue λ^{ε} of

$$
\begin{aligned}
-\operatorname{div}\left(\sigma^{\varepsilon} \nabla u^{\varepsilon}\right) & =\lambda^{\varepsilon} u^{\varepsilon} \quad \text { in } \Omega, \\
u^{\varepsilon} & =0 \text { on } \partial \Omega,
\end{aligned}
$$

is an analytic function of ε in a neighbourhood of $\varepsilon=0$ and the positive eigenfunction u^{ε} satisfying

$$
\int_{\Omega}\left(u^{\varepsilon}\right)^{2}=1
$$

is analytic with respect to ε.

Asymptotic Expansion

We plug the following ansätze:

$$
\begin{aligned}
& u^{\varepsilon}=v_{0}+\varepsilon v_{1}+\ldots \\
& \lambda^{\varepsilon}=\lambda_{0}+\varepsilon \lambda_{1}+\ldots
\end{aligned}
$$

in $-\operatorname{div}\left(\sigma^{\varepsilon} \nabla u^{\varepsilon}\right)=\lambda^{\varepsilon}$ and $u^{\varepsilon}=0$. Gather terms of similar order in ε :

$$
\begin{align*}
-\operatorname{div}\left(\alpha \nabla v_{0}\right) & =\lambda_{0} v_{0} \text { in } \Omega, \tag{2.1}\\
v_{0} & =0 \text { on } \partial \Omega . \tag{2.2}
\end{align*}
$$

$$
\begin{align*}
-\operatorname{div}\left(\alpha \nabla v_{1}\right)-\lambda_{0} v_{1} & =\operatorname{div}\left(\chi_{B} \nabla v_{0}\right)+\lambda_{1} v_{0} \text { in } \Omega, \tag{2.3}\\
v_{1} & =0 \text { on } \partial \Omega . \tag{2.4}
\end{align*}
$$

(2.3)-(2.4) has a solution if and only if (Fredholm alternative)

$$
\int_{\Omega} \operatorname{div}\left(\chi_{B} \nabla v_{0}\right) v_{0}+\lambda_{1} \int_{\Omega} v_{0}^{2}=0 .
$$

Asymptotic Expansion

Using $\int_{\Omega} v_{0}^{2}=1$ we obtain

$$
\lambda_{1}=-\int_{\Omega} \operatorname{div}\left(\chi_{B} \nabla v_{0}\right) v_{0} \Longrightarrow \lambda_{1}=\lambda_{1}(B)=\int_{B}\left|\nabla v_{0}\right|^{2} .
$$

Theorem

If $B_{\varepsilon}^{\star} \in \mathcal{B}$ is a minimizer of $\lambda^{\varepsilon}(\cdot)$ then:

$$
\left|\lambda_{1}\left(B_{\varepsilon}^{\star}\right)-\inf _{B \in \mathcal{B}} \lambda_{1}(B)\right| \leq C \varepsilon^{\frac{1}{2}} .
$$

Optimality conditions

Theorem

- There exists $c^{*} \geq 0$ such that whenever B is a measurable subset of Ω satisfying

$$
\left\{x:\left|\nabla v_{0}(x)\right|<c^{*}\right\} \subset B \subset\left\{x:\left|\nabla v_{0}(x)\right| \leq c^{*}\right\}
$$

and $|B|=m$, then B is a solution for the problem of minimizing $\lambda_{1}(B)$ over $B \in \mathcal{B}$.

- If $\left\{x:\left|\nabla v_{0}(x)\right|=c^{*}\right\}$ is of measure zero, then the unique solution (up to a set of measure zero) is the set

$$
B^{*}=\left\{x:\left|\nabla v_{0}(x)\right|<c^{*}\right\} .
$$

This is the case if Ω is a disk.

The Disk Case

- $\Omega=\mathbb{B}(0,1)$ in 2 D or 3 D
- The solution of $-\operatorname{div}\left(\alpha \nabla v_{0}\right)=\lambda_{0} v_{0}$ in Ω and $v_{0}=0$ on $\partial \Omega$ is radial: $v_{0}(x)=w(|x|)$

$$
\begin{aligned}
r^{2} w_{0}^{\prime \prime}(r)+(d-1) r w_{0}^{\prime}(r)+r^{2} \frac{\lambda_{0}}{\alpha} w_{0}(r) & =0 \\
w_{0}^{\prime}(0)=0, w_{0}(1) & =0
\end{aligned}
$$

- In 2D, $w_{0}(r)=J_{0}\left(\eta_{d} r\right)$ where J_{0} is the Bessel function of the first kind and η_{d} is its first zero.

The Disk Case

- $\Omega=\mathbb{B}(0,1)$ in 2 D or 3 D
- The solution of $-\operatorname{div}\left(\alpha \nabla v_{0}\right)=\lambda_{0} v_{0}$ in Ω and $v_{0}=0$ on $\partial \Omega$ is radial: $v_{0}(x)=w(|x|)$

$$
\begin{aligned}
r^{2} w_{0}^{\prime \prime}(r)+(d-1) r w_{0}^{\prime}(r)+r^{2} \frac{\lambda_{0}}{\alpha} w_{0}(r) & =0, \\
w_{0}^{\prime}(0)=0, w_{0}(1) & =0 .
\end{aligned}
$$

- In 2D, $w_{0}(r)=J_{0}\left(\eta_{d} r\right)$ where J_{0} is the Bessel function of the first kind and η_{d} is its first zero.

The Disk Case

$$
\begin{aligned}
\left|\nabla v_{0}\right|^{2}(x)= & \left(w_{1}(r)\right)^{2}:=\left(-w_{0}^{\prime}(r)\right)^{2} \text { and the solution is: } \\
& \lambda_{1}(B)=\int_{B}\left|\nabla v_{0}\right|^{2} \Longrightarrow B^{*}=\left\{x: w_{1}(r)<c^{*}\right\}
\end{aligned}
$$

where c^{*} is such that $\left|B^{*}\right|=m$.

Figure : $w_{0}(r)$ (red), and $w_{1}(r):=-w_{0}^{\prime}(r)$ (green) in dimensions $d=2$ (left) and $d=3$ (right), w_{1} increasing on $\left[0, r_{d}^{1}\right]$ and decreasing on $\left[r_{d}^{1}, 1\right]$, and r_{d}^{0} is such that $w_{1}\left(r_{d}^{0}\right)=w_{1}(1)$.

The Disk Case

Theorem

The solution $B^{*}=\min _{B \in \mathcal{B}} \lambda_{1}(B)$ is of two possible types.
There exists $\bar{m}=\omega_{d}\left(r_{d}^{0}\right)^{d}$ such that

- Type I: If $m \leq \bar{m}$ then $B^{*}=B\left(0,\left(m / \omega_{d}\right)^{1 / d}\right)$ or,
- Type II: If $m>\bar{m}$ then there exists ξ^{0} and ξ^{1} with

$$
\begin{aligned}
& \left(m / \omega_{d}\right)^{1 / d}<\xi^{0}<\xi^{1}<1 \text { such that } \\
& \qquad B^{*}=B\left(0, \xi^{0}\right) \cup\left(B(0,1) \backslash \overline{B\left(0, \xi^{1}\right)}\right) .
\end{aligned}
$$

Theorem

When $\Omega=B(0,1)$, for $\beta=\alpha+\varepsilon$ sufficiently close to α and $m>\bar{m}$, $B=\mathbb{B}\left(0, r^{*}\right)$ does not minimize $\lambda^{\varepsilon}(B)$ in \mathcal{B}.

Low contrast regime - other geometries

Figure : Optimal distribution of the material B (black) and A (white) when Ω is a square in low contrast regime. The set B contains the corners and the center. $m /|\Omega| \approx 14 \%$.

Low contrast regime - other geometries

Figure : Optimal distribution of the material B (black) and A (white) when Ω is a polygon in low contrast regime. The set A contains the reentrant corner. $m /|\Omega| \approx 34 \%$.

Low contrast regime - other geometries

Figure : Optimal distribution of the material B (red) and A (yellow) when Ω is a ring in low contrast regime. The set B is also a ring. $m /|\Omega| \approx 17 \%$.
C. Conca, A. Laurain, and R. Mahadevan (2012). "Minimization of the Ground State for Two Phase Conductors in Low Contrast Regime." In: SIAM Journal on Applied Mathematics 72.4, pp. 1238-1259

Global optimum in low contrast regime

- We want to prove that $B^{*}=\operatorname{argmin} \lambda_{1}(B)$ is also a minimizer of $\lambda^{\varepsilon}(B)$ for small ε.
- We have found minimizers of $\lambda_{1}(B)$ but not of $\lambda^{\varepsilon}(B)$, it was enough to disprove the conjecture.
- The minimizer $B_{\varepsilon}=\operatorname{argmin} \lambda^{\varepsilon}(B)$ does not necessarily converge as $\varepsilon \rightarrow 0$.
- If it does, B_{ε} does not necessarily converge to $B^{*}=\operatorname{argmin} \lambda_{1}(B)$.
- We need to prove first $B_{\varepsilon} \rightarrow B^{*}$ in an appropriate sense. The convergence of B_{ε} is linked to the convergence $\nabla u_{\varepsilon} \rightarrow \nabla u_{0}$. We need a convergence of ∇u_{ε} stronger than just L^{2}.

L^{∞}-convergence of the gradient

Theorem (arbitrary Ω)

For $\varepsilon>0$ small, there exists c independent of ε and B such that

$$
\left\|u_{\varepsilon}(B)-u_{0}\right\|_{H_{0}^{\prime}(\Omega)} \leq c \varepsilon^{\frac{1}{2}} \quad \forall B \in \mathcal{B} .
$$

Theorem (case $\Omega=\mathbb{B}(0,1)$)

Assume $\Omega=\mathbb{B}(0,1)$ and B is radially symmetric. The functions u_{ε} and u_{0} are in $W^{1, \infty}(\Omega)$ and there exists $\varepsilon_{0}>0$ such that for all $\varepsilon<\varepsilon_{0}$,

$$
\left\|\nabla u_{\varepsilon}-\nabla u_{0}\right\|_{L^{\infty}(\Omega)} \leq c \sqrt{\varepsilon}
$$

Idea of the proof: the radial symmetry brings additional regularity, and use Hardy's inequality.

Quasi-optimal sets

Theorem

Let

$$
r^{*}=\left(m / \omega_{d}\right)^{1 / d}, \quad \omega_{d}=|\mathbb{B}(0,1)| .
$$

Let $B \subset \Omega$ be a radially symmetric measurable set and $m<\bar{m}$. For all $\delta>0$, there exists $\varepsilon_{0}=\varepsilon_{0}(\delta)>0$ and B_{δ}^{*} radially symmetric and containing the origin such that for all $0<\varepsilon \leq \varepsilon_{0}(\delta)$ we have

$$
\lambda^{\varepsilon} \lambda^{\varepsilon}\left(B_{\delta}^{*}\right) \leq \lambda^{\varepsilon}(B) \quad\left|B_{\delta}^{*}\right|=m,
$$

and

$$
\mathbb{B}\left(0, r^{*}-\delta\right) \subset B_{\delta}^{*} \subset \mathbb{B}\left(0, r^{*}+\delta\right)
$$

Idea of the proof: use $\left\|\nabla u_{\varepsilon}-\nabla u_{0}\right\|_{L^{\infty}(\Omega)} \leq c \sqrt{\varepsilon}$ and threshold.

Global optimum in low contrast regime

- Goal: prove the existence of $\varepsilon_{0}>0$ such that

$$
\lambda^{\varepsilon}\left(B^{*}\right) \leq \lambda^{\varepsilon}(B),
$$

for all $B \in \mathcal{B}$ and $\varepsilon \leq \varepsilon_{0}$, where $B^{*}=\mathbb{B}\left(0, r^{*}\right)$.

- Fact: for all $\varepsilon>0$ there exists a $\delta(\varepsilon)>0$ such that

$$
\lambda^{\varepsilon}\left(B_{\delta(\varepsilon)}^{*}\right) \leq \lambda^{\varepsilon}(B)
$$

holds with $\delta(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$ and $\delta(\varepsilon)$ strictly increasing.

- We need: the other inequality

$$
\lambda^{\varepsilon}\left(B^{*}\right) \leq \lambda^{\varepsilon}\left(B_{\delta(\varepsilon)}^{*}\right) .
$$

- $B_{\delta(\varepsilon)}^{*}$ is "close" to B^{*}, otherwise no information.
- It is just enough to perform an asymptotic expansion of the eigenvalue with respect to $\delta(\varepsilon)$.

Global optimum in low contrast regime

- We prove: For all $0<\varepsilon \leq \varepsilon_{0}$ and $0<\delta \leq \delta_{0}$ we have

$$
\lambda^{\varepsilon}\left(B^{*}\right) \leq \lambda^{\varepsilon}\left(B_{\delta}\right),
$$

where B_{δ} is any radially symmetric set satisfying

$$
\mathbb{B}\left(0, r^{*}-\delta\right) \subset B_{\delta} \subset \mathbb{B}\left(0, r^{*}+\delta\right)
$$

- Choose $B_{\delta}=B_{\delta(\varepsilon)}^{*}$ for ε small enough

$$
\lambda^{\varepsilon}\left(B^{*}\right) \leq \lambda^{\varepsilon}\left(\boldsymbol{B}_{\delta}\right)=\lambda^{\varepsilon}\left(B_{\delta(\varepsilon)}^{*}\right) \leq \lambda^{\varepsilon}(\boldsymbol{B}),
$$

- Idea of the proof: find an expansion with $\rho(\delta)>0$

$$
\lambda^{\varepsilon}\left(B_{\delta}\right)=\lambda^{\varepsilon}\left(B^{*}\right)+\rho(\delta) \bar{\lambda}^{\varepsilon}+\mathcal{R}(\varepsilon, \delta) \text { as } \rho(\delta) \rightarrow 0
$$

and $\mathcal{R}(\varepsilon, \delta) / \rho(\delta) \rightarrow 0$ uniformly as $(\delta, \varepsilon) \rightarrow 0$. Prove then that $\bar{\lambda}^{\varepsilon} \geq 0$.

Global optimum in low contrast regime - type I

Theorem

If $m<\bar{m}$ there exists $\varepsilon_{0}>0$ such that for all $B \in \mathcal{B}$ we have

$$
\lambda^{\varepsilon}\left(B^{*}\right) \leq \lambda^{\varepsilon}(B) \text { for all } 0<\varepsilon<\varepsilon_{0}
$$

and the equality occurs only when $B=B^{*}$ almost everywhere in Ω.

Global optimum in low contrast regime - type II

Theorem

If $m>\bar{m}$ there exists $\varepsilon_{0}>0$ such that for all $B \in \mathcal{B}$ and for all $0<\varepsilon<\varepsilon_{0}$ there exists $\xi_{\varepsilon}^{0}, \xi_{\varepsilon}^{1}$ such that

$$
\lambda^{\varepsilon}\left(B_{\varepsilon}^{*}\right) \leq \lambda^{\varepsilon}(B)
$$

where

$$
B_{\varepsilon}^{*}=\mathbb{B}\left(0, \xi_{\varepsilon}^{0}\right) \cup \mathbb{B}(0,1) \backslash \overline{\mathrm{B}\left(0, \xi_{\varepsilon}^{1}\right)}
$$

and the equality occurs only when $B=B_{\varepsilon}^{*}$ almost everywhere in Ω. In addition we have

$$
\left(\xi_{\varepsilon}^{0}, \xi_{\varepsilon}^{1}\right) \rightarrow\left(\xi^{0}, \xi^{1}\right) \text { as } \varepsilon \rightarrow 0 .
$$

A. Laurain. "Global minimizer of the ground state for two phase conductors in low contrast regime." In: ESAIM Control Optim. Calc. Var. (To appear)

Descent Algorithm-general α, β

Variational formulation for λ

$$
\lambda(B)=\min _{u \in H_{0}^{1}(\Omega)} \frac{\int_{\Omega} \sigma(B)|\nabla u|^{2}}{\int_{\Omega} u^{2}}=\min _{u \in H_{0}^{1}(\Omega),\|u\|_{2}=1} \int_{\Omega} \sigma(B)|\nabla u|^{2} .
$$

Descent Algorithm

Descent Algorithm-general α, β

Variational formulation for λ

$$
\lambda(B)=\min _{u \in H_{0}^{1}(\Omega)} \frac{\int_{\Omega} \sigma(B)|\nabla u|^{2}}{\int_{\Omega} u^{2}}=\min _{u \in H_{0}^{1}(\Omega),\|u\|_{2}=1} \int_{\Omega} \sigma(B)|\nabla u|^{2} .
$$

Descent Algorithm

- Initial measurable set $B_{0},\left|B_{0}\right|=m$.
- $\mathcal{M}\left(B_{0}, c\right):=\left|\left\{x:\left|\nabla u_{B_{0}}(x)\right| \leq c\right\}\right|$.
$c_{0}:=\inf \left\{c: \mathcal{M}\left(B_{0}, c\right) \geq m\right\}$.
- Under suitable conditions $\mathcal{M}\left(B_{0}, c_{0}\right)=m$.
- Update $B_{1}=\left\{x:\left|\nabla u_{B_{0}}(x)\right| \leq c_{0}\right\}$.

Descent Algorithm-general α, β

Variational formulation for λ

$$
\lambda(B)=\min _{u \in H_{0}^{\prime}(\Omega)} \frac{\int_{\Omega} \sigma(B)|\nabla u|^{2}}{\int_{\Omega} u^{2}}=\min _{u \in H_{0}^{1}(\Omega),\|u\|_{2}=1} \int_{\Omega} \sigma(B)|\nabla u|^{2} .
$$

Descent Algorithm

- Initial measurable set $B_{0},\left|B_{0}\right|=m$.
- $\mathcal{M}\left(B_{0}, c\right):=\left|\left\{x:\left|\nabla u_{B_{0}}(x)\right| \leq c\right\}\right|$.
- $c_{0}:=\inf \left\{c: \mathcal{M}\left(B_{0}, c\right) \geq m\right\}$
- Under suitable conditions $\mathcal{M}\left(B_{0}, c_{0}\right)=m$.
- Update $B_{1}=\left\{x:\left|\nabla u_{B_{0}}(x)\right| \leq c_{0}\right\}$.

Descent Algorithm-general α, β

Variational formulation for λ

$$
\lambda(B)=\min _{u \in H_{0}^{1}(\Omega)} \frac{\int_{\Omega} \sigma(B)|\nabla u|^{2}}{\int_{\Omega} u^{2}}=\min _{u \in H_{0}^{1}(\Omega),\|u\|_{2}=1} \int_{\Omega} \sigma(B)|\nabla u|^{2} .
$$

Descent Algorithm

- Initial measurable set $B_{0},\left|B_{0}\right|=m$.
- $\mathcal{M}\left(B_{0}, c\right):=\left|\left\{x:\left|\nabla u_{B_{0}}(x)\right| \leq c\right\}\right|$.
- $c_{0}:=\inf \left\{c: \mathcal{M}\left(B_{0}, c\right) \geq m\right\}$.
- Under suitable conditions $\mathcal{M}\left(B_{0}, c_{0}\right)=m$.
- Update $B_{1}=\left\{x:\left|\nabla u_{B_{0}}(x)\right| \leq c_{0}\right\}$.

Descent Algorithm-general α, β

Variational formulation for λ

$$
\lambda(B)=\min _{u \in H_{0}^{1}(\Omega)} \frac{\int_{\Omega} \sigma(B)|\nabla u|^{2}}{\int_{\Omega} u^{2}}=\min _{u \in H_{0}^{1}(\Omega),\|u\|_{2}=1} \int_{\Omega} \sigma(B)|\nabla u|^{2} .
$$

Descent Algorithm

- Initial measurable set $B_{0},\left|B_{0}\right|=m$.
- $\mathcal{M}\left(B_{0}, c\right):=\left|\left\{x:\left|\nabla u_{B_{0}}(x)\right| \leq c\right\}\right|$.
- $c_{0}:=\inf \left\{c: \mathcal{M}\left(B_{0}, c\right) \geq m\right\}$.
- Under suitable conditions $\mathcal{M}\left(B_{0}, c_{0}\right)=m$.

Descent Algorithm-general α, β

Variational formulation for λ

$$
\lambda(B)=\min _{u \in H_{0}^{\prime}(\Omega)} \frac{\int_{\Omega} \sigma(B)|\nabla u|^{2}}{\int_{\Omega} u^{2}}=\min _{u \in H_{0}^{1}(\Omega),\|u\|_{2}=1} \int_{\Omega} \sigma(B)|\nabla u|^{2} .
$$

Descent Algorithm

- Initial measurable set $B_{0},\left|B_{0}\right|=m$.
- $\mathcal{M}\left(B_{0}, c\right):=\left|\left\{x:\left|\nabla u_{B_{0}}(x)\right| \leq c\right\}\right|$.
- $c_{0}:=\inf \left\{c: \mathcal{M}\left(B_{0}, c\right) \geq m\right\}$.
- Under suitable conditions $\mathcal{M}\left(B_{0}, c_{0}\right)=m$.
- Update $B_{1}=\left\{x:\left|\nabla u_{B_{0}}(x)\right| \leq c_{0}\right\}$.

Descent Algorithm-general α, β

Theorem

$\lambda\left(B_{1}\right) \leq \lambda\left(B_{0}\right)$; equality holds if and only if $B_{1}=B_{0}$ a.e. (under extra hypotheses). If B_{0} is optimal, then $B_{0}=\left\{x:\left|\nabla u_{B_{0}}(x)\right| \leq c_{0}\right\}$ a.e.

Corollary

- The disk case. $\Omega=\mathbb{B}(0, R)$, then B^{*} should include the origin.
- The ring case. The gradient of u vanishes on a circle whose center is the center of the ring. This circle is in the optimal set.
- Domains with corners in two dimensions. B* contains a neighbourhood of the corners with angle smaller than π and $A^{*}=\Omega \backslash B^{*}$ contains a neighbourhood of the corners with angie greater than π

Descent Algorithm-general α, β

Theorem

$\lambda\left(B_{1}\right) \leq \lambda\left(B_{0}\right)$; equality holds if and only if $B_{1}=B_{0}$ a.e. (under extra hypotheses). If B_{0} is optimal, then $B_{0}=\left\{x:\left|\nabla u_{B_{0}}(x)\right| \leq c_{0}\right\}$ a.e.

Corollary

- The disk case. $\Omega=\mathbb{B}(0, R)$, then B^{*} should include the origin.
- The ring case. The gradient of u vanishes on a circle whose center is the center of the ring. This circle is in the optimal set.
- Domains with corners in two dimensions. B^{*} contains a neighbourhood of the corners with angle smaller than π and $A^{*}=\Omega \backslash B^{*}$ contains a neighbourhood of the corners with angle greater than π.

Descent Algorithm-general α, β

Theorem

$\lambda\left(B_{1}\right) \leq \lambda\left(B_{0}\right)$; equality holds if and only if $B_{1}=B_{0}$ a.e. (under extra hypotheses). If B_{0} is optimal, then $B_{0}=\left\{x:\left|\nabla u_{B_{0}}(x)\right| \leq c_{0}\right\}$ a.e.

Corollary

- The disk case. $\Omega=\mathbb{B}(0, R)$, then B^{*} should include the origin.
- The ring case. The gradient of u vanishes on a circle whose center is the center of the ring. This circle is in the optimal set.
- Domains with corners in two dimensions. B^{*} contains a neighbourhood of the corners with angle smaller than π and $A^{*}=\Omega \backslash B^{*}$ contains a neighbourhood of the corners with angie greater than π.

Descent Algorithm-general α, β

Theorem

$\lambda\left(B_{1}\right) \leq \lambda\left(B_{0}\right)$; equality holds if and only if $B_{1}=B_{0}$ a.e. (under extra hypotheses). If B_{0} is optimal, then $B_{0}=\left\{x:\left|\nabla u_{B_{0}}(x)\right| \leq c_{0}\right\}$ a.e.

Corollary

- The disk case. $\Omega=\mathbb{B}(0, R)$, then B^{*} should include the origin.
- The ring case. The gradient of u vanishes on a circle whose center is the center of the ring. This circle is in the optimal set.
- Domains with corners in two dimensions. B^{*} contains a neighbourhood of the corners with angle smaller than π and $A^{*}=\Omega \backslash B^{*}$ contains a neighbourhood of the corners with angle greater than π.

The Disk Case

Figure : Initial domain $B_{0}=\mathcal{B}(0,0.75)$ (left). Optimal distribution (right).

Figure : Initial domain $B_{0}=\mathcal{B}(0,0.75)$ (left). Optimal distribution (right).

Thank you for your attention !!

[^0]: Solution in a particular case
 We exhibit alobal minimizers in low contrast regime

[^1]: Solution in a particular case
 We exhibit global minimizers in low contrast regime.

