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Inverse Problems

I Direct problem: given initial conditions
−→ find evolution of a physical system

I Inverse problem: given final state of a physical system
−→ find initial conditions

I Well-posedness (Hadamard):
1. Existence
2. Uniqueness
3. Stability

I The problem is Ill-posed if one of these conditions is not
satisfied −→ need for regularization.

I Many important inverse problems in tomography, geology,
etc ... are ill-posed.
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Electrical Impedance Tomography (EIT)
Ω bounded, simply connected, Σ = ∂Ω.

I Given: apply electric currents f on Σ / measure voltages v on Σ.

I Find: electrical properties in Ω matching measurements.

At x ∈ Ω, find admittivity γ(x , ω) = q(x) + iωe(x) with

I electrical conductivity q;

I electric permittivity e

courtesy: Dept. Physics, Univ. Kuopio
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EIT – Potential applications

In many applications, there is a large resistivity (1/q) contrast
between a wide range of materials (e.g., up to about 200:1 for tissue
types in the body; Geddes and Baker, 1967).

=⇒ used for imaging structure within Ω.

I Geophysics: Porosity of core samples, map groundwater in
borehole-to-borehole experiments, ...

I Medical imaging: Pulmonary measurements (functionality,
detection of emboli), breast cancer detection, blood flow,...

I Non-destructive testing: Crack identification, void detection...

I References: [Ammari et al], [Borcea, Guevara Vasquez],
[Calderón],[Cheney, Isaacson, Newell], [Druskin et al.],
[Hansen,Knudsen], [Kaipio et al.], [Kohn, Vogelius], [Lionheart],
[Nachman], [Somersalo et al.], [Sylvester, Uhlmann]...
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EIT – Mathematical model

The model comes in two flavors:
I Continuum model. f supposed to be known on all of Σ.
I Electrode model. Current (or voltage) through electrodes

distributed along Σ.
In practice, boundary currents f (x) are not known for all x ∈ Σ.

I Currents sent along wires attached to N electrodes.

courtesy: EIT group, Oxford Brookes Univ.
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Fluorescence Optical Tomography (FOT)
1. Diffusion of photons at e(x)citation wavelength λx from sources

at the boundary into the body.

2. Absorption at λx by fluorophores and re-e(m)ission at
wavelength λm .

3. Diffusion of re-emitted photons through the body.

4. Measurement of light intensities leaving the body.

5. Find c, the concentration of fluorophores in Ω.

courtesy: Manuel Freiberger, Univ. Graz
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FOT – Potential applications

I FOT uses fluorescent dyes to overcome the low contrast in
optical parameters, that result in low signal-to-noise ratios.

I Medical imaging.

I Low-cost alternative or complement to existing imaging
technology such as EIT.

I References: [Arridge], [Chance et al.], [Dorn et al.], [Egger et
al.], [Roy et al], [Schweiger et al.] ...
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Piecewise constant model
I We are interested in sharp interface models and

reconstructions [Chan et al.], [Dorn et al.], [Eckel, Kress]....
I Piecewise constant conductivity

q(x) =

nq∑
i=0

qiχΩi (x)

.
I Unknowns: qi and interface Γ :=

⋃nq
i=1 Γi , Γi := ∂Ωi .



Inverse problems Piecewise constant model Numerical results

EIT – Output-least-squares formulation

Given fk (x) ∈ H−1/2(Ω) and associated measurements mk ∈ L2(Σ)

minimize J(q) =
1
2

M∑
k=1

‖uk (q)−mk‖2
L2(Σ) + αR(q)

subject to div(q∇uk ) = 0 in H1(Ω)′,
q∂nuk = fk on Σ,∫

Σ

uk = 0, k = 1, . . . ,M.

Regularization: Total variation (TV)

R(q) =

∫
Ω

|Dq| =

nq∑
i=1

|q0 − qi |Per(Ωi ).
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EIT – Output-least-squares formulation

Given fk (x) ∈ H−1/2(Ω) and associated measurements mk ∈ L2(Σ)

minimize J(q) =
1
2

M∑
k=1

‖uk (q)−mk‖2
L2(Σ) + αR(q)

subject to div(q∇uk ) = 0 in H1(Ω)′,
q∂nuk = fk on Σ,∫

Σ

uk = 0, k = 1, . . . ,M.

Shape optimization perspective

J ({Ωi ,qi}
nq
i=0) = J

( nq∑
i=0

qiχΩi (x)

)
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FOT – Output-least-squares formulation

Given fk (x) ∈ (H1(Ω))′ and associated measurements mk ∈ L2(Σ)

minimize J(c) =
1
2

M∑
k=1

‖ρmφm,k (c)−mk‖2
L2(Σ) + αR(c)

subject to div(κx(c)∇φx,k ) + µx (c)φx,k = fk in H1(Ω)′,
κx(c)∂nφx,k + ρxφx,k = 0 on Σ,

div(κm(c)∇φm,k ) + µm(c)φm,k = γ(c)φx,k in H1(Ω)′,
κm(c)∂nφm,k + ρmφm,k = 0 on Σ,

Regularization: Total variation (TV)

R(c) =

∫
Ω

|Dc| =

nc∑
i=1

|ci − c0|Per(Ωi ).
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FOT – Output-least-squares formulation

Given fk (x) ∈ (H1(Ω))′ and associated measurements mk ∈ L2(Σ)

minimize J(c) =
1
2

M∑
k=1

‖ρmφm,k (c)−mk‖2
L2(Σ) + αR(c)

subject to ∇ · (κx(c)∇φx,k ) + µx (c)φx,k = fk in H1(Ω)′,
κx(c)∂nφx,k + ρxφx,k = 0 on Σ,

∇ · (κm(c)∇φm,k ) + µm(c)φm,k = γ(c)φx,k in H1(Ω)′,
κm(c)∂nφm,k + ρmφm,k = 0 on Σ,

Shape optimization perspective

J ({Ωi , ci}nc
i=0) = J(c) =

1
2

M∑
k=1

‖ρmφm,k (c)−mk‖2
L2(Σ) + αR(c)
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Algorithmic approach

1. Initialize the sub-regions Ωi using the
topological derivative.

2. Update the interface Γ for fixed qi using the
shape derivative and a steepest descent flow within a level
set framework.

3. Update the conductivities qi for fixed Γ.
4. Then alternate step 2 and 3.
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Step1: Topological derivative

I Problem of initialization: Use topological sensitivity.

I Existing works: [Nazarov et al.], [Eschenauer, Schumacher],
[Sokolowski, Zochowski], [Masmoudi et al.], [Amstutz], [Ammari
et al.], [Bendsøe, Sigmund], [Novotny et al.], ...

I Topological derivative of J at x ∈ Ω:

T (x) = lim
ε↓0

J (Ω \ B(x ; ε))− J (Ω)

|B(x ; ε)|

I A small inclusion B(x ; ε) may be created where T (x) < 0

=⇒ J (Ω \ B(x ; ε)) < J (Ω)
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Topological derivative

−∆u0 = 0 in Ω,

q∂nu0 = f on Σ.

J (Ω) =

∫
Σ

(u0 −m)2

−div(qε∇uε) = 0 in Ω,

qε∂nuε = f on Σ.

J (Ωε) =

∫
Σ

(uε −m)2
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Asymptotic analysis

We perform an asymptotic expansion of the type

uε(x) =
∞∑

j=0

εj(vj(x) + Wj(ε
−1x)).

I vj are functions of regular type, living in Ω.
I Wj are boundary layers, living in R3 \ ω.

Then replace uε in J(Ωε):

J (Ωε) =

∫
Σ

(uε −m)2 = J (Ω) + |Bε|T0(x) + ...
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Topological sensitivity

I First-order expansion ( nq = 1, Ωε := Ω \ Bε(x))

J (Ωε) = J (Ω) + |Bε|T0(x) + r0,ε(x), ε→ 0,

I The leading term is

T0(x) =
N

N − 1
α∇u0(x) · ∇p(x)

I α = (q − q1)/(q + q1/(N − 1)), and p denotes the adjoint state

−∆p = 0 in Ω,

∂np = 2(u −m) on Σ.

I r0,ε(x) = O(|Bε|) is the remainder.
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Topological sensitivity

I Second-order expansion ( nq = 1, Ωε := Ω \ B(x ; ε))

J (Ωε) = J (Ω) + |Bε|T0(x) + ε2NT1(x) + r1,ε(x), ε→ 0,

I The leading term is

T0(x) =
N

N − 1
α∇u0(x) · ∇p(x)

I α = (q − q1)/(q + q1/(N − 1)), and p denotes the adjoint state

−∆p = 0 in Ω,

∂np = 2(u −m) on Σ.

I r1,ε(x) is the remainder.
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Higher-order expansion

J (Ωε) = J (Ω)+|Bε|T0(x)+ε2NT1(x)+ε2|Bε|T2(x)+r2,ε(x), ε→ 0,

T0(x) T0(x), T1(x) T0(x), T1(x), T2(x)

T0(x) < 0 on Σ. Higher-order terms provide a better result.
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Higher-order expansion
For one trial inclusion (nq = 1)

J (Ωε) = J (Ω) + |Bε|T0(x) + ε2NT1(x) + ε2|Bε|T2(x) + O(εN+3),

with

T0(x) =
N

N − 1
α∇u0(x) · ∇p(x),

T1(x) =
α2

2(N − 1)2

∑
i,j

∂iu(x) ∂ju(x)I(1)
i,j (x),

T2(x) =
β

N
D2u0(x) · D2p(x),

where

I(1)
i,j (x) =

∫
Σ

(ξ − x)i (ξ − x)j

|ξ − x |2N dξ



Inverse problems Piecewise constant model Numerical results

Step 2: Shape optimization

I General concept: Smooth boundary transformation.

I [Murat, Simon], [Sokolowski, Zolesio], [Delfour, Zolesio] ...

moving domain Ωt

Perturbation field: V

Moving domain: Ωt = Tt (V )(Ω)

Shape functional: J(Ωt )

Shape derivative:

dJ(Ω,V ) = lim
t→0

J(Ωt )− J(Ω)

t
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Step 2: Shape optimization

Consider the domains for nq inclusions

Ω∗ = Ω \
(
∪nq

i=1Ωi

)
with Ωi ∩ Ωj = ∅ for i 6= j ,

The shape functional and shape derivative are (M = 1)

J ({Ωi}) =

∫
Σ

|u({Ωi})−m|2 + β

nq∑
i=1

|q − qi |Per(Γi ),

dJ ({Ωi}; V ) =

nq∑
i=1

∫
Γi

[(qi − q)∇p · ∇u + β|q − qi |H] vn.
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Step 3: Conductivity optimization

We set

J(q) =
1
2

M∑
i=1

‖ui(q)−mi‖2L2(Σ) + αR(q).

with M = 1. Consider perturbations of the conductivity

qηi = qi + ηq̄i ,

which leads to the derivative

dJ({qj}
nq
j=1; q̄i) = q̄i

(
qi − q
|qi − q|

βPer(Γi)−
∫

Ωi

∇u · ∇p
)
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Level set methods

Choose a function φ(t , x) such that

Ωt = {x ∈ Ωt | φ(t , x) < 0}
Ωc

t = {x ∈ Ωt | φ(t , x) > 0}
∂Ωt = {x ∈ Ωt | φ(t , x) = 0}

For instance, φ can be chosen as the signed distance function
to ∂Ωt
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Evolution of the level set function

Consider a point x(t) on the moving boundary Γt , we have
φ(t , x(t)) = 0. Differentiating w.r.t. t we get

φt (t , x) + V (t , x) · ∇φ(t , x) = 0.

Since ∇φ(t , x) = |∇φ(t , x)|n(t , x)
we get the Hamilton-Jacobi equation :

φt (t , x) + vn(t , x)|∇φ(t , x)| = 0,

with φt time derivative of φ and φ(0, x) a given data.
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Electrical Impedance Tomography

Reconstructions for 1% noise

1. original phantom
2. reconstruction
3. topological derivative
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Electrical Impedance Tomography

Reconstructions for 3% (left) and 5% (right) noise.

1. original phantom
2. reconstruction
3. topological derivative
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Fluorescence Optical Tomography

1. original phantom (5% noise in the data)
2. reconstruction using topological derivative and exact c1

3. reconstruction using single step algorithm [Egger et al.]
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Fluorescence Optical Tomography

1. original phantom (5% noise in the data)
2. reconstruction using topological derivative and exact c1

3. reconstruction using single step algorithm [Egger et al.]
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Fluorescence Optical Tomography

1. original phantom (left column)
2. reconstructed inclusion with trial values c0 = 0 and

c1 = 5.10−3,1.10−2,5.10−2 (first row),
3. reconstructed inclusion with trial values

c0 = 3.10−5,7.10−5,1.10−4 and c1 = 1.10−2 (second row)
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Fluorescence Optical Tomography

1. original coefficients κ̃x , µ̃x , κ̃m, µ̃m.
2. purposely erroneous coefficients κx , µx , κm, µm used to

compute the topological derivative.
3. corresponding reconstructions (third row)
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Fluorescence Optical Tomography

Figure : original phantom (left), topological derivative (right)
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Inverse Potential Problem - Gravimetry

I Reconstruct an unknown measure with support in a
domain Ω from a single measurement of its potential on
the boundary ∂Ω.

I Application to gravimetry: determine Earth’s density
distribution from the measurement of the gravity and its
derivatives on the surface of the Earth.

I Ill-posed problem. A priori assumptions on the class of
measures to be reconstructed can be made.

I Joint work with A. Canelas and A.A. Novotny.
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Inverse Potential Problem - Mathematical model

Ω ⊂ R2 open and bounded, with Lipschitz boundary ∂Ω and
γ = (γ0, γ1) ∈ R2 is given.

PCγ(Ω) := {b = γ0χΩ\ω + γ1χω ∈ L∞(Ω) | ω ⊂ Ω measurable}

Given q∗ ∈ H−1/2(∂Ω) and u∗ ∈ H1/2(∂Ω), find

b∗ = γ0χΩ\ω∗ + γ1χω∗ ∈ PCγ(Ω) ,

such that 
−∆u = b∗ in Ω ,

u
−∂nu

=
=

u∗

q∗

}
on ∂Ω .

has a solution u ∈ H1(Ω).
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Inverse Potential Problem

Theorem (Isakov)
Assume bi = γ0χΩ\ωi

+ γ1χωi , i = 1,2 where γ = (γ0, γ1) is
given, and ω1, ω2 are two star-shaped domains with respect to
their barycenters. If the corresponding boundary data are
equal, then ω1 = ω2.

We consider a broader class of admissible sets ω ⊂ PCγ(Ω):

ω =
⋃
i∈I

ωi with ωi ∩ ωj = ∅ for i 6= j .

with ωi measurable and simply connected.
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Inverse Potential Problem

Kohn-Vogelius functional

min
b∈PCγ(Ω)

J(b) :=
1
2

∫
Ω

(
uD[b]− uN [b]

)2
,

where uD[b] and uN [b] solve (with c[b] = 1
|Ω|
(∫
∂Ω q∗ −

∫
Ω b
)
){

−∆uD[b] = b in Ω ,

uD[b] = u∗ on ∂Ω ,
−∆uN [b] = b + c[b] in Ω ,

−∂nuN [b] = q∗ on ∂Ω ,∫
Ω

uN [b] =

∫
Ω

uD[b] ,
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Inverse Potential Problem

Define $e,x̂ = ∪i∈IB(εi , x̂i) and

be,x̂ = γ0χΩ\$e,x̂
+ γ1

∑
i∈I

χB(εi ,x̂i )
.

We have the following expansion

J (Ω \$e,x̂) = J (Ω) +
∑
i∈I

f1(εi)D1
TJ (x̂i) +

∑
i,j∈I

f2(εi , εj)D2
TJ (x̂i , x̂j) ,

where f1(εi) = πε2
i , f2(εi , εj) = 1

2π
2ε2

i ε
2
j .

D1
TJ (x̂i) =

∫
Ω

(uD[γ0]− uN [γ0])hi , D2
TJ (x̂i , x̂j) =

∫
Ω

hihj .
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Inverse Potential Problem

Introduce the adjoint states{
−∆pD = −(uD[γ0]− uN [γ0]) in Ω ,

pD = 0 on ∂Ω ,

and 
−∆pN = uD[γ0]− uN [γ0] in Ω ,

−∂npN = 0 on ∂Ω ,∫
Ω

pN = 0 ,

From Green’s formula we get

D1
TJ (x̂i) = −(γ1 − γ0)

(
pD(x̂i) + pN(x̂i)

)
.
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Inverse Potential Problem

I Define ai := πε2
i , i ∈ I,

I For fixed x̂ minimize Jx̂(a) := J(be,x̂).
I To find a we differentiate the topological expansion to

obtain the first order optimality conditions:∑
j∈I

D2
TJ (x̂i , x̂j)aj = −D1

TJ (x̂i) for i ∈ I , (1)

I Define e(x̂) :=
√

a/π.
I Minimize J(be(x̂),x̂) with respect to x̂.
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Inverse Potential Problem

(a) (b) (c)

Figure : Looking for two anomalies: true source term (a) and
reconstructions using two (b) and three trial balls (c).
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Inverse Potential Problem

(a) (b) (c)

Figure : Looking for three anomalies: true source term (a) and
reconstructions using three (b) and four trial balls (c).
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Inverse Potential Problem

(a) (b)

Figure : Three anomalies: true source term (a) and reconstruction
using three balls (b).

(a) (b)

Figure : Two anomalies: true source term (a) and reconstruction
using three balls (b).
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THANK YOU!
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