Shape and Topology Optimization Methods for Inverse Problems

Antoine Laurain
Technical University of Berlin, Germany.
joint works with:
A. Canelas, M. Freiberger, M. Hintermüller, A.A. Novotny
DTU compute 2013

Inverse Problems

- Direct problem: given initial conditions \longrightarrow find evolution of a physical system
- Inverse problem: given final state of a physical system \longrightarrow find initial conditions
- Well-posedness (Hadamard):

1. Existence
2. Uniqueness
3. Stability

- The problem is III-posed if one of these conditions is not satisfied \longrightarrow need for regularization.
- Many important inverse problems in tomography, geology, etc ... are ill-posed.

Electrical Impedance Tomography (EIT)

Ω bounded, simply connected, $\Sigma=\partial \Omega$.

- Given: apply electric currents f on $\Sigma /$ measure voltages v on Σ.
- Find: electrical properties in Ω matching measurements.

At $x \in \Omega$, find admittivity $\gamma(x, \omega)=q(x)+i \omega e(x)$ with

- electrical conductivity q;
- electric permittivity e

EIT - Potential applications

In many applications, there is a large resistivity $(1 / q)$ contrast between a wide range of materials (e.g., up to about 200:1 for tissue types in the body; Geddes and Baker, 1967).
\Longrightarrow used for imaging structure within Ω.

- Geophysics: Porosity of core samples, map groundwater in borehole-to-borehole experiments, ...
- Medical imaging: Pulmonary measurements (functionality, detection of emboli), breast cancer detection, blood flow,...
- Non-destructive testing: Crack identification, void detection...
- References: [Ammari et al], [Borcea, Guevara Vasquez], [Calderón],[Cheney, Isaacson, Newell], [Druskin et al.], [Hansen,Knudsen], [Kaipio et al.], [Kohn, Vogelius], [Lionheart], [Nachman], [Somersalo et al.], [Sylvester, UhImann]...

EIT - Mathematical model

The model comes in two flavors:

- Continuum model. f supposed to be known on all of Σ.
- Electrode model. Current (or voltage) through electrodes distributed along Σ.
In practice, boundary currents $f(x)$ are not known for all $x \in \Sigma$.
- Currents sent along wires attached to N electrodes.

Fluorescence Optical Tomography (FOT)

1. Diffusion of photons at $e(x)$ citation wavelength λ_{x} from sources at the boundary into the body.
2. Absorption at λ_{x} by fluorophores and re-e(m)ission at wavelength λ_{m}.
3. Diffusion of re-emitted photons through the body.
4. Measurement of light intensities leaving the body.
5. Find c, the concentration of fluorophores in Ω.

FOT - Potential applications

- FOT uses fluorescent dyes to overcome the low contrast in optical parameters, that result in low signal-to-noise ratios.
- Medical imaging.
- Low-cost alternative or complement to existing imaging technology such as EIT.
- References: [Arridge], [Chance et al.], [Dorn et al.], [Egger et al.], [Roy et al], [Schweiger et al.] ...

Piecewise constant model

- We are interested in sharp interface models and reconstructions [Chan et al.], [Dorn et al.], [Eckel, Kress]....
- Piecewise constant conductivity

$$
q(x)=\sum_{i=0}^{n_{q}} q_{i} \chi \Omega_{i}(x)
$$

- Unknowns: q_{i} and interface $\Gamma:=\bigcup_{i=1}^{n_{q}} \Gamma_{i}, \Gamma_{i}:=\partial \Omega_{i}$.

EIT - Output-least-squares formulation

Given $f_{k}(x) \in H^{-1 / 2}(\Omega)$ and associated measurements $m_{k} \in L^{2}(\Sigma)$

$$
\begin{array}{lrl}
\text { minimize } & J(q)=\frac{1}{2} \sum_{k=1}^{M}\left\|u_{k}(q)-m_{k}\right\|_{L^{2}(\Sigma)}^{2}+\alpha R(q) \\
\text { subject to } & \operatorname{div}\left(q \nabla u_{k}\right) & =0 \quad \text { in } H^{1}(\Omega)^{\prime} \\
q \partial_{n} u_{k} & =f_{k} \quad \text { on } \Sigma, \\
\int_{\Sigma} u_{k} & =0, \quad k=1, \ldots, M .
\end{array}
$$

Regularization: Total variation (TV)

$$
R(q)=\int_{\Omega}|D q|=\sum_{i=1}^{n_{q}}\left|q_{0}-q_{i}\right| \operatorname{Per}\left(\Omega_{i}\right)
$$

EIT - Output-least-squares formulation

Given $f_{k}(x) \in H^{-1 / 2}(\Omega)$ and associated measurements $m_{k} \in L^{2}(\Sigma)$

$$
\begin{array}{lrl}
\text { minimize } & J(q)=\frac{1}{2} \sum_{k=1}^{M}\left\|u_{k}(q)-m_{k}\right\|_{L^{2}(\Sigma)}^{2}+\alpha R(q) \\
\text { subject to } & \operatorname{div}\left(q \nabla u_{k}\right)^{2} & =0 \quad \text { in } H^{1}(\Omega)^{\prime} \\
q \partial_{n} u_{k} & =f_{k} \quad \text { on } \Sigma \\
\int_{\Sigma} u_{k} & =0, \quad k=1, \ldots, M .
\end{array}
$$

Shape optimization perspective

$$
\mathcal{J}\left(\left\{\Omega_{i}, q_{i}\right\}_{i=0}^{n_{q}}\right)=J\left(\sum_{i=0}^{n_{q}} q_{i} \chi_{\Omega_{i}}(x)\right)
$$

FOT - Output-least-squares formulation

Given $f_{k}(x) \in\left(H^{1}(\Omega)\right)^{\prime}$ and associated measurements $m_{k} \in L^{2}(\Sigma)$

$$
\begin{array}{lrlll}
\text { minimize } & J(c)=\frac{1}{2} \sum_{k=1}^{M}\left\|\rho_{\mathrm{m}} \phi_{\mathrm{m}, k}(c)-m_{k}\right\|_{L^{2}(\Sigma)}^{2}+\alpha R(c) & \\
\text { subject to } & \operatorname{div}\left(\kappa_{\mathrm{x}}(c) \nabla \phi_{\mathrm{x}, k}\right)+\mu_{x}(c) \phi_{\mathrm{x}, k} & =f_{k} & & \text { in } H^{1}(\Omega)^{\prime}, \\
\kappa_{\mathrm{x}}(c) \partial_{n} \phi_{\mathrm{x}, k}+\rho_{\mathrm{x}} \phi_{\mathrm{x}, k} & =0 & & \text { on } \Sigma, \\
\operatorname{div}\left(\kappa_{\mathrm{m}}(c) \nabla \phi_{\mathrm{m}, k}\right)+\mu_{\mathrm{m}}(c) \phi_{\mathrm{m}, k} & =\gamma(c) \phi_{\mathrm{x}, k} & & \text { in } H^{1}(\Omega)^{\prime}, \\
\kappa_{\mathrm{m}}(c) \partial_{n} \phi_{\mathrm{m}, k}+\rho_{\mathrm{m}} \phi_{\mathrm{m}, k} & =0 & & \text { on } \Sigma,
\end{array}
$$

Regularization: Total variation (TV)

$$
R(c)=\int_{\Omega}|D c|=\sum_{i=1}^{n_{c}}\left|c_{i}-c_{0}\right| \operatorname{Per}\left(\Omega_{i}\right)
$$

FOT - Output-least-squares formulation

Given $f_{k}(x) \in\left(H^{1}(\Omega)\right)^{\prime}$ and associated measurements $m_{k} \in L^{2}(\Sigma)$

$$
\begin{array}{lrlll}
\text { minimize } & J(c)=\frac{1}{2} \sum_{k=1}^{M}\left\|\rho_{\mathrm{m}} \phi_{\mathrm{m}, k}(c)-m_{k}\right\|_{L^{2}(\Sigma)}^{2}+\alpha R(c) & & \\
\text { subject to } & \nabla \cdot\left(\kappa_{\mathrm{x}}(c) \nabla \phi_{\mathrm{x}, k}\right)+\mu_{x}(c) \phi_{\mathrm{x}, k} & =f_{k} & & \text { in } H^{1}(\Omega)^{\prime}, \\
\kappa_{\mathrm{x}}(c) \partial_{n} \phi_{\mathrm{x}, k}+\rho_{\mathrm{x}} \phi_{\mathrm{x}, k} & =0 & & \text { on } \Sigma, \\
\nabla \cdot\left(\kappa_{\mathrm{m}}(c) \nabla \phi_{\mathrm{m}, k}\right)+\mu_{\mathrm{m}}(c) \phi_{\mathrm{m}, k} & =\gamma(c) \phi_{\mathrm{x}, k} & & \text { in } H^{1}(\Omega)^{\prime}, \\
\kappa_{\mathrm{m}}(c) \partial_{n} \phi_{\mathrm{m}, k}+\rho_{\mathrm{m}} \phi_{\mathrm{m}, k} & =0 & & \text { on } \Sigma,
\end{array}
$$

Shape optimization perspective

$$
\mathcal{J}\left(\left\{\Omega_{i}, c_{i}\right\}_{i=0}^{n_{c}}\right)=J(c)=\frac{1}{2} \sum_{k=1}^{M}\left\|\rho_{\mathrm{m}} \phi_{\mathrm{m}, k}(c)-m_{k}\right\|_{L^{2}(\Sigma)}^{2}+\alpha R(c)
$$

Algorithmic approach

1. Initialize the sub-regions Ω_{i} using the topological derivative.
2. Update the interface Γ for fixed q_{i} using the shape derivative and a steepest descent flow within a level set framework.
3. Update the conductivities q_{i} for fixed Γ.
4. Then alternate step 2 and 3.

Step1: Topological derivative

- Problem of initialization: Use topological sensitivity.
- Existing works: [Nazarov et al.], [Eschenauer, Schumacher], [Sokolowski, Zochowski], [Masmoudi et al.], [Amstutz], [Ammari et al.], [Bendsøe, Sigmund], [Novotny et al.], ...
- Topological derivative of \mathcal{J} at $x \in \Omega$:

$$
\mathcal{T}(x)=\lim _{\varepsilon \downarrow 0} \frac{\mathcal{J}(\Omega \backslash B(x ; \varepsilon))-\mathcal{J}(\Omega)}{|B(x ; \varepsilon)|}
$$

- A small inclusion $B(x ; \varepsilon)$ may be created where $\mathcal{T}(x)<0$

$$
\Longrightarrow \mathcal{J}(\Omega \backslash B(x ; \varepsilon))<\mathcal{J}(\Omega)
$$

Topological derivative

$$
\begin{aligned}
& -\Delta u^{0}=0 \text { in } \Omega \\
& q \partial_{n} u^{0}=f \text { on } \Sigma . \\
& \mathcal{J}(\Omega)=\int_{\Sigma}\left(u^{0}-m\right)^{2}
\end{aligned}
$$

Topological derivative

$$
\begin{aligned}
& -\Delta u^{0}=0 \text { in } \Omega, \\
& q \partial_{n} u^{0}=f \text { on } \Sigma . \\
& \mathcal{J}(\Omega)=\int_{\Sigma}\left(u^{0}-m\right)^{2}
\end{aligned}
$$

$$
-\operatorname{div}\left(q^{\varepsilon} \nabla u^{\varepsilon}\right)=0 \text { in } \Omega,
$$

$$
q^{\varepsilon} \partial_{n} u^{\varepsilon}=f \text { on } \Sigma \text {. }
$$

$$
\mathcal{J}\left(\Omega^{\varepsilon}\right)=\int_{\Sigma}\left(u^{\varepsilon}-m\right)^{2}
$$

Asymptotic analysis

We perform an asymptotic expansion of the type

$$
u^{\varepsilon}(x)=\sum_{j=0}^{\infty} \varepsilon^{j}\left(v_{j}(x)+W_{j}\left(\varepsilon^{-1} x\right)\right) .
$$

- v_{j} are functions of regular type, living in Ω.
- W_{j} are boundary layers, living in $\mathbb{R}^{3} \backslash \bar{\omega}$.

Then replace u^{ε} in $J\left(\Omega^{\varepsilon}\right)$:

$$
\mathcal{J}\left(\Omega^{\varepsilon}\right)=\int_{\Sigma}\left(u^{\varepsilon}-m\right)^{2}=\mathcal{J}(\Omega)+\left|B^{\varepsilon}\right| \mathcal{T}_{0}(x)+\ldots
$$

Topological sensitivity

- First-order expansion ($\left.n_{q}=1, \Omega^{\varepsilon}:=\Omega \backslash B^{\varepsilon}(x)\right)$

$$
\mathcal{J}\left(\Omega^{\varepsilon}\right)=\mathcal{J}(\Omega)+\left|B^{\varepsilon}\right| \mathcal{T}_{0}(x) \quad+r_{0, \varepsilon}(x), \varepsilon \rightarrow 0
$$

- The leading term is

$$
\mathcal{T}_{0}(x)=\frac{N}{N-1} \alpha \nabla u^{0}(x) \cdot \nabla p(x)
$$

- $\alpha=\left(q-q_{1}\right) /\left(q+q_{1} /(N-1)\right)$, and p denotes the adjoint state

$$
\begin{aligned}
-\Delta p & =0 \text { in } \Omega, \\
\partial_{n} p & =2(u-m) \text { on } \Sigma .
\end{aligned}
$$

- $r_{0, \varepsilon}(x)=\mathcal{O}\left(\left|B^{\varepsilon}\right|\right)$ is the remainder.

Topological sensitivity

- Second-order expansion $\left(n_{q}=1, \Omega^{\varepsilon}:=\Omega \backslash B(x ; \varepsilon)\right)$

$$
\mathcal{J}\left(\Omega^{\varepsilon}\right)=\mathcal{J}(\Omega)+\left|B^{\varepsilon}\right| \mathcal{T}_{0}(x)+\varepsilon^{2 N} \mathcal{T}_{1}(x)+r_{1, \varepsilon}(x), \varepsilon \rightarrow 0,
$$

- The leading term is

$$
\mathcal{T}_{0}(x)=\frac{N}{N-1} \alpha \nabla u^{0}(x) \cdot \nabla p(x)
$$

- $\alpha=\left(q-q_{1}\right) /\left(q+q_{1} /(N-1)\right)$, and p denotes the adjoint state

$$
\begin{aligned}
-\Delta p & =0 \text { in } \Omega \\
\partial_{n} p & =2(u-m) \text { on } \Sigma .
\end{aligned}
$$

- $r_{1, \varepsilon}(x)$ is the remainder.

Higher-order expansion

$$
\mathcal{J}\left(\Omega^{\varepsilon}\right)=\mathcal{J}(\Omega)+\left|B^{\varepsilon}\right| \mathcal{T}_{0}(x)+\varepsilon^{2 N} \mathcal{T}_{1}(x)+\varepsilon^{2}\left|B^{\varepsilon}\right| \mathcal{T}_{2}(x)+r_{2, \varepsilon}(x), \varepsilon \rightarrow 0,
$$

$$
\mathcal{T}_{0}(x)
$$

$$
\mathcal{T}_{0}(x), \mathcal{T}_{1}(x)
$$

$$
\mathcal{T}_{0}(x), \mathcal{T}_{1}(x), \mathcal{T}_{2}(x)
$$

$\mathcal{T}_{0}(x)<0$ on Σ.
Higher-order terms provide a better result.

Higher-order expansion

For one trial inclusion ($n_{q}=1$)

$$
\mathcal{J}\left(\Omega^{\varepsilon}\right)=\mathcal{J}(\Omega)+\left|B^{\varepsilon}\right| \mathcal{T}_{0}(x)+\varepsilon^{2 N} \mathcal{T}_{1}(x)+\varepsilon^{2}\left|B^{\varepsilon}\right| \mathcal{T}_{2}(x)+O\left(\varepsilon^{N+3}\right),
$$

with

$$
\begin{aligned}
\mathcal{T}_{0}(x) & =\frac{N}{N-1} \alpha \nabla u^{0}(x) \cdot \nabla p(x) \\
\mathcal{T}_{1}(x) & =\frac{\alpha^{2}}{2(N-1)^{2}} \sum_{i, j} \partial_{i} u(x) \partial_{j} u(x) \mathcal{I}_{i, j}^{(1)}(x) \\
\mathcal{T}_{2}(x) & =\frac{\beta}{N} D^{2} u^{0}(x) \cdot D^{2} p(x)
\end{aligned}
$$

where

$$
\mathcal{I}_{i, j}^{(1)}(x)=\int_{\Sigma} \frac{(\xi-x)_{i}(\xi-x)_{j}}{|\xi-x|^{2 N}} d \xi
$$

Step 2: Shape optimization

- General concept: Smooth boundary transformation.
- [Murat, Simon], [Sokolowski, Zolesio], [Delfour, Zolesio] ...

Perturbation field: V
Moving domain: $\Omega_{t}=T_{t}(V)(\Omega)$
Shape functional: $J\left(\Omega_{t}\right)$
Shape derivative:

$$
d J(\Omega, V)=\lim _{t \rightarrow 0} \frac{J\left(\Omega_{t}\right)-J(\Omega)}{t}
$$

moving domain Ω_{t}

Step 2: Shape optimization

Consider the domains for n_{q} inclusions

$$
\Omega^{*}=\Omega \backslash\left(\cup_{i=1}^{n_{q}} \overline{\Omega_{i}}\right) \quad \text { with } \quad \Omega_{i} \cap \Omega_{j}=\varnothing \quad \text { for } \quad i \neq j,
$$

The shape functional and shape derivative are $(M=1)$

$$
\begin{aligned}
\mathcal{J}\left(\left\{\Omega_{i}\right\}\right) & =\int_{\Sigma}\left|u\left(\left\{\Omega_{i}\right\}\right)-m\right|^{2}+\beta \sum_{i=1}^{n_{q}}\left|q-q_{i}\right| \operatorname{Per}\left(\Gamma_{i}\right), \\
d \mathcal{J}\left(\left\{\Omega_{i}\right\} ; V\right) & =\sum_{i=1}^{n_{q}} \int_{\Gamma_{i}}\left[\left(q_{i}-q\right) \nabla p \cdot \nabla u+\beta\left|q-q_{i}\right| \mathcal{H}\right] v_{n} .
\end{aligned}
$$

Step 3: Conductivity optimization

We set

$$
J(q)=\frac{1}{2} \sum_{i=1}^{M}\left\|u_{i}(q)-m_{i}\right\|_{L^{2}(\Sigma)}^{2}+\alpha R(q)
$$

with $M=1$. Consider perturbations of the conductivity

$$
q_{i}^{\eta}=q_{i}+\eta \bar{q}_{i}
$$

which leads to the derivative

$$
d J\left(\left\{q_{j}\right\}_{j=1}^{n_{q}} ; \bar{q}_{i}\right)=\bar{q}_{i}\left(\frac{q_{i}-q}{\left|q_{i}-q\right|} \beta \operatorname{Per}\left(\Gamma_{i}\right)-\int_{\Omega_{i}} \nabla u \cdot \nabla p\right)
$$

Level set methods

Choose a function $\phi(t, x)$ such that

$$
\begin{aligned}
\Omega_{t} & =\left\{x \in \Omega_{t} \mid \phi(t, x)<0\right\} \\
\Omega_{t}^{c} & =\left\{x \in \Omega_{t} \mid \phi(t, x)>0\right\} \\
\partial \Omega_{t} & =\left\{x \in \Omega_{t} \mid \phi(t, x)=0\right\}
\end{aligned}
$$

For instance, ϕ can be chosen as the signed distance function to $\partial \Omega_{t}$

Evolution of the level set function

Consider a point $x(t)$ on the moving boundary Γ_{t}, we have $\phi(t, x(t))=0$. Differentiating w.r.t. t we get

$$
\phi_{t}(t, x)+V(t, x) \cdot \nabla \phi(t, x)=0
$$

Since $\nabla \phi(t, x)=|\nabla \phi(t, x)| n(t, x)$
we get the Hamilton-Jacobi equation :

$$
\phi_{t}(t, x)+v_{n}(t, x)|\nabla \phi(t, x)|=0
$$

with ϕ_{t} time derivative of ϕ and $\phi(0, x)$ a given data.

Electrical Impedance Tomography

Reconstructions for 1\% noise

1. original phantom
2. reconstruction
3. topological derivative

Electrical Impedance Tomography

Reconstructions for 3\% (left) and 5\% (right) noise.

1. original phantom
2. reconstruction
3. topological derivative

Fluorescence Optical Tomography

1. original phantom (5% noise in the data)
2. reconstruction using topological derivative and exact c_{1}
3. reconstruction using single step algorithm [Egger et al.]

Fluorescence Optical Tomography

1. original phantom (5% noise in the data)
2. reconstruction using topological derivative and exact c_{1}
3. reconstruction using single step algorithm [Egger et al.]

Fluorescence Optical Tomography

1. original phantom (5% noise in the data)
2. reconstruction using topological derivative and exact c_{1}
3. reconstruction using single step algorithm [Egger et al.]

Fluorescence Optical Tomography

1. original phantom (left column)
2. reconstructed inclusion with trial values $c_{0}=0$ and $c_{1}=5.10^{-3}, 1.10^{-2}, 5.10^{-2}$ (first row),
3. reconstructed inclusion with trial values $c_{0}=3.10^{-5}, 7.10^{-5}, 1.10^{-4}$ and $c_{1}=1.10^{-2}$ (second row)

Fluorescence Optical Tomography

1. original coefficients $\tilde{\kappa}_{x}, \tilde{\mu}_{x}, \tilde{\kappa}_{m}, \tilde{\mu}_{m}$.
2. purposely erroneous coefficients $\kappa_{x}, \mu_{x}, \kappa_{m}, \mu_{m}$ used to compute the topological derivative.
3. corresponding reconstructions (third row)

Fluorescence Optical Tomography

Figure : original phantom (left), topological derivative (right)

Inverse Potential Problem - Gravimetry

- Reconstruct an unknown measure with support in a domain Ω from a single measurement of its potential on the boundary $\partial \Omega$.
- Application to gravimetry: determine Earth's density distribution from the measurement of the gravity and its derivatives on the surface of the Earth.
- III-posed problem. A priori assumptions on the class of measures to be reconstructed can be made.
- Joint work with A. Canelas and A.A. Novotny.

Inverse Potential Problem - Mathematical model

$\Omega \subset \mathbb{R}^{2}$ open and bounded, with Lipschitz boundary $\partial \Omega$ and $\gamma=\left(\gamma_{0}, \gamma_{1}\right) \in \mathbb{R}^{2}$ is given.
$P C_{\gamma}(\Omega):=\left\{b=\gamma_{0} \chi_{\Omega \backslash \omega}+\gamma_{1} \chi_{\omega} \in L^{\infty}(\Omega) \mid \omega \subset \Omega\right.$ measurable $\}$
Given $q^{*} \in H^{-1 / 2}(\partial \Omega)$ and $u^{*} \in H^{1 / 2}(\partial \Omega)$, find

$$
b^{*}=\gamma_{0} \chi_{\Omega \backslash \omega^{*}}+\gamma_{1} \chi_{\omega^{*}} \in P C_{\gamma}(\Omega),
$$

such that

$$
\left\{\begin{array}{rll}
-\Delta u & =b^{*} \quad \text { in } \Omega, \\
u & = & u^{*} \\
-\partial_{n} u & =q^{*}
\end{array}\right\} \text { on } \partial \Omega .
$$

has a solution $u \in H^{1}(\Omega)$.

Inverse Potential Problem

Theorem (Isakov)
Assume $b_{i}=\gamma_{0} \chi_{\Omega \backslash \omega_{i}}+\gamma_{1} \chi_{\omega_{i}}, i=1,2$ where $\gamma=\left(\gamma_{0}, \gamma_{1}\right)$ is given, and ω_{1}, ω_{2} are two star-shaped domains with respect to their barycenters. If the corresponding boundary data are equal, then $\omega_{1}=\omega_{2}$.

We consider a broader class of admissible sets $\omega \subset P C_{\gamma}(\Omega)$:

$$
\omega=\bigcup_{i \in \mathcal{I}} \omega_{i} \quad \text { with } \quad \omega_{i} \cap \omega_{j}=\emptyset \quad \text { for } \quad i \neq j
$$

with ω_{i} measurable and simply connected.

Inverse Potential Problem

Kohn-Vogelius functional

$$
\min _{b \in P C_{\gamma}(\Omega)} J(b):=\frac{1}{2} \int_{\Omega}\left(u^{D}[b]-u^{N}[b]\right)^{2}
$$

where $u^{D}[b]$ and $u^{N}[b]$ solve (with $c[b]=\frac{1}{|\Omega|}\left(\int_{\partial \Omega} q^{*}-\int_{\Omega} b\right)$)

$$
\begin{aligned}
& \left\{\begin{aligned}
-\Delta u^{D}[b] & = & b & \text { in } \Omega, \\
u^{D}[b] & = & u^{*} & \text { on } \partial \Omega,
\end{aligned}\right. \\
& \left\{\begin{aligned}
-\Delta u^{N}[b] & =b+c[b] & \text { in } \Omega, \\
-\partial_{n} u^{N}[b] & =q^{*} & \text { on } \partial \Omega, \\
\int_{\Omega} u^{N}[b] & =\int_{\Omega} u^{D}[b], &
\end{aligned}\right.
\end{aligned}
$$

Inverse Potential Problem

Define $\varpi_{\mathbf{e}, \hat{\mathbf{x}}}=\cup_{i \in \mathcal{I}} B\left(\varepsilon_{i}, \widehat{x}_{i}\right)$ and

$$
b_{\mathrm{e}, \hat{\mathrm{x}}}=\gamma_{0} \chi_{\Omega \backslash \varpi_{\mathrm{e}, \hat{\mathrm{x}}}}+\gamma_{1} \sum_{i \in \mathcal{I}} \chi_{B\left(\varepsilon_{i}, \hat{\mathrm{x}}_{\boldsymbol{i}}\right)} .
$$

We have the following expansion

$$
\mathcal{J}\left(\Omega \backslash \varpi_{\mathbf{e}, \hat{\mathbf{x}}}\right)=\mathcal{J}(\Omega)+\sum_{i \in \mathcal{I}} f_{1}\left(\varepsilon_{i}\right) D_{T}^{1} \mathcal{J}\left(\widehat{x}_{i}\right)+\sum_{i, j \in \mathcal{I}} f_{2}\left(\varepsilon_{i}, \varepsilon_{j}\right) D_{T}^{2} \mathcal{J}\left(\widehat{x}_{i}, \widehat{x}_{j}\right),
$$

where $f_{1}\left(\varepsilon_{i}\right)=\pi \varepsilon_{i}^{2}, f_{2}\left(\varepsilon_{i}, \varepsilon_{j}\right)=\frac{1}{2} \pi^{2} \varepsilon_{i}^{2} \varepsilon_{j}^{2}$.

$$
D_{T}^{1} \mathcal{J}\left(\widehat{x}_{i}\right)=\int_{\Omega}\left(u^{D}\left[\gamma_{0}\right]-u^{N}\left[\gamma_{0}\right]\right) h_{i}, \quad D_{T}^{2} \mathcal{J}\left(\widehat{x}_{i}, \widehat{x}_{j}\right)=\int_{\Omega} h_{i} h_{j} .
$$

Inverse Potential Problem

Introduce the adjoint states

$$
\left\{\begin{aligned}
-\Delta p^{D} & =-\left(u^{D}\left[\gamma_{0}\right]-u^{N}\left[\gamma_{0}\right]\right) & & \text { in } \Omega \\
p^{D} & =0 & & \text { on } \partial \Omega
\end{aligned}\right.
$$

and

$$
\left\{\begin{array}{rlrl}
-\Delta p^{N} & =u^{D}\left[\gamma_{0}\right]-u^{N}\left[\gamma_{0}\right] & \text { in } \Omega \\
-\partial_{n} p^{N} & =0 & \text { on } \partial \Omega \\
\int_{\Omega} p^{N} & =0 & &
\end{array}\right.
$$

From Green's formula we get

$$
D_{T}^{1} \mathcal{J}\left(\widehat{x}_{i}\right)=-\left(\gamma_{1}-\gamma_{0}\right)\left(p^{D}\left(\widehat{x}_{i}\right)+p^{N}\left(\widehat{x}_{i}\right)\right) .
$$

Inverse Potential Problem

- Define $a_{i}:=\pi \varepsilon_{i}^{2}, i \in \mathcal{I}$,
- For fixed $\widehat{\mathbf{x}}$ minimize $J_{\widehat{\mathbf{x}}}(\mathbf{a}):=J\left(b_{\mathbf{e}, \hat{\mathbf{x}}}\right)$.
- To find a we differentiate the topological expansion to obtain the first order optimality conditions:

$$
\begin{equation*}
\sum_{j \in \mathcal{I}} D_{T}^{2} \mathcal{J}\left(\widehat{x}_{i}, \widehat{x}_{j}\right) a_{j}=-D_{T}^{1} \mathcal{J}\left(\widehat{x}_{i}\right) \quad \text { for } \quad i \in \mathcal{I} \tag{1}
\end{equation*}
$$

- Define $\mathbf{e}(\hat{\mathbf{x}}):=\sqrt{\mathbf{a} / \pi}$.
- Minimize $J\left(b_{\mathbf{e}(\hat{\mathbf{x}}), \hat{\mathbf{x}}}\right)$ with respect to $\hat{\mathbf{x}}$.

Inverse Potential Problem

(a)

(b)

(c)

Figure : Looking for two anomalies: true source term (a) and reconstructions using two (b) and three trial balls (c).

Inverse Potential Problem

Figure : Looking for three anomalies: true source term (a) and reconstructions using three (b) and four trial balls (c).

Inverse Potential Problem

(a)

(b)

Figure : Three anomalies: true source term (a) and reconstruction using three balls (b).

Figure : Two anomalies: true source term (a) and reconstruction using three balls (b).

THANK YOU!

