
Control of free boundaries

Antoine Laurain

Technical University of Berlin
Department of Mathematics

MATHEON-Projekt C37 “Shape/Topology optimization methods for inverse problems”

Workshop on Shape and Topology Optimization
to celebrate the 65th Birthday of Professor Jan Sokolowski
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Bernoulli problem

Free boundary problem

We define the set of admissible shapes as

Oad = {Ω ⊂ R2 a bounded domain : ω ⊂ Ω, Ω ⊂ E}.

For given µ ∈ R, µ < 0, we consider the following free boundary problem:

(Fω) : Find Ω ∈ Oad such that

−∆u = 0 in Ω \ ω,
u = 1 on Σ := ∂ω,
u = 0 on Γ := ∂Ω,

∂nu = µ on Γ,

ω is a parameter and Γ is the free boundary

Control of free boundaries A. Laurain



Bernoulli problem Control of droplet footprint

Existence of solutions and control problem

Ω∗(ω) denotes the solution to (Fω).

Set of admissible domains:

Uad := {ω ⊂ R2 | ωmin ⊂ ω ⊂ ωmax ⊂ E ,
ω is star-like with respect to all points

in the ball Bδ(0) and ω is of class C2,α},

Uad guarantees existence, uniqueness as well as stability of the
solution to (Fω) with respect to ω [Acker, Meyer 95].

If ω ∈ Uad, then Ω∗(ω) is of class C∞ and is star-like with respect to
all points in Bδ(0).

With these assumptions there exists a unique Ω∗(ω) solution of
(Fω). We write Γ∗(ω) := ∂Ω∗(ω).

Control problem: Find ω such that Γ∗(ω) is as close as possible to
the boundary ∂E of a Lipschitz domain E ∈ Oad such that ω ⊂ E.

Control of free boundaries A. Laurain



Bernoulli problem Control of droplet footprint

References

Control of problems defined on unknown domains:
Panaras, Theodorakakos, Berggeles, continuous casting of steel, 1998.
Volkov, Protas, Liao, Glander, welding processes, 2009.
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Shape functionals

We study the minimization of two functionals.

The first functional is the measure of the symmetric difference:

J1(Ω) := |Ω ∩ Ec|+ |E ∩ Ωc| =
∫

Ω∩Ec

1 dx+

∫
E∩Ωc

1 dx.

|Ω ∩ Ec| = 0 forces Ω to be included in E.

|E ∩ Ωc| = 0 forces Ω to contain E.

Figure : “Free” set Ω and target E
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Shape functionals

The second, ”smoother”, functional

J2(Ω, ω) =
1

2

∫
Ω∩Ec

u(Ω, ω)2 dx+
1

2

∫
E∩ωc

(u(Ω, ω)− ul(ω))2 dx,

where u = u(Ω, ω) ∈ H1
0 (E) is the extension by zero to E of

−∆u = 0 in Ω \ ω,
u = 1 on Σ := ∂ω, u = 0 on Γ := ∂Ω.

The function ul = ul(ω) solves

−∆ul = 0 in E \ ω,
ul = 1 on Σ, ul = 0 on ∂E.

Proposition

Let ω be a given open bounded set with ω ⊂ Ω. We have J1(Ω) = 0 and
J2(Ω, ω) = 0 if and only if Ω = E almost everywhere.
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Shape optimization problem

Bilevel shape optimization problem

(Bi) :

{
minimize Ji(Ω, ω)
subject to ω ∈ Uad and Ω solves (Fω).

The problem of minimizing Ji(Ω, ω) over ω ∈ Uad is called the
upper-level problem, while (Fω) is the lower-level problem.

Defining the reduced functionals

K1(ω) := J1(Ω∗(ω)), K2(ω) := J2(Ω∗(ω), ω),

we can rewrite the bilevel problem as

(Bi) :

{
minimize Ki(ω)
subject to ω ∈ Uad.

The minimum of Ki(ω) need not exist and need not be 0 in general.
In these cases we have Ω∗(ω) 6= E even if ω minimizes Ki(ω).
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Shape derivative

We consider perturbations of identity I + V where V is in a
neighborhood of 0 in Ck,αb (R2,R2) with k ≥ 1 and 0 < α < 1, so
that I + V is a bi-Lipschitz homeomorphism.

Let T (V) = I + V, V ∈ Ck,αb (R2,R2), and denote

ωV = T (V)(ω).

The functional K(ω) is Fréchet-differentiable at ω ⊂ R2 if there

exists a linear and continuous functional ∇K(ω) from Ck,αb (R2,R2)
to R called shape gradient such that

K(ωV) = K(ω) +∇K(ω) ·V + r(V),

where |r(V)|/‖V‖k,α → 0 as ‖V‖k,α → 0.

Define the shape derivative as

dK(ω;V) := ∇K(ω) ·V.
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Sensitivity analysis of the PDE

Compute the shape derivative with respect to ω.

Assume there exists W∗ = W∗(V) ∈ Ck,αb (R2,R2) such that

Ω∗(ωV) = T (W∗(V))(Ω∗(ω0))

for V in a neighborhood of 0.

Since u = u(ωV,Ω
∗(ωV)), formally applying the chain rule:

DV[u(ωV,Ω
∗(ωV))](V̂) = D1u(ωV,Ω

∗(ωV))(V̂)

+D2u(ωV,Ω
∗(ωV))(DV[T (W∗(V))](V̂))

For simplicity write Ŵ∗ := DV[T (W∗(V))](V̂) and

u′ = u′(V̂,Ŵ∗) := DV[u(ωV,Ω
∗(ωV))](V̂)
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Sensitivity analysis of the PDE

Using shape calculus we obtain

−∆u′ = 0 in Ω∗(ω) \ ω,

u′ = −∂nuV̂ · n on Σ,

u′ = −∂nuŴ∗ · n on Γ∗(ω),

∂nu
′ = divΓ(∇ΓuŴ

∗ · n) + µHŴ∗ · n on Γ∗(ω),

Since ∇Γu = 0 and ∂nu = µ on Γ we get

−∆u′ = 0 in Ω∗(ω) \ ω,

u′ = −∂nuV̂ · n on Σ,

u′= −µŴ∗ · n on Γ∗(ω),

∂nu
′= µHŴ∗ · n on Γ∗(ω).
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Sensitivity analysis of the PDE

Gathering the two last boundary conditions we can eliminate Ŵ∗:

−∆u′ = 0 in Ω∗(ω) \ ω,

u′ = −∂nuV̂ · n on Σ,

∂nu
′ +Hu′ = 0 on Γ∗(ω).

Assuming H ≥ 0, this equation has a unique solution.

We also obtain

Ŵ∗(V̂) = −µ−1u′(V̂)n on Γ∗(ω)

The tangential component of Ŵ∗ can be chosen arbitrarily
according to the Hadamard-Zolésio structure theorem and is taken
equal to zero.
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Sensitivity analysis

Theorem

Assume that there exist two bounded open sets Ω, ω of class Cm+1,α,
m ≥ 2, 0 < α < 1 such that (Fω) is satisfied in Ω \ ω. Assume H ≥ 0 on
Γ = ∂Ω. Then there exists an open neighborhood V of 0 in
Cm,αb (R2,R2) and a function

V 3 V 7→W∗(V) ∈ Cm,αb (R2,R2)

of class C∞ such that (Fω) has a solution in ΩW∗(V) \ ωV for all V ∈ V
and W∗(0) ≡ 0.

Main idea of the proof: Apply the implicit function theorem at
(vn, wn) = (0, 0) for the function

F : Cm,α(Σ)× Cm,α(Γ)→ Cm,α(Ω \ ω),

(vn, wn) 7→ (u1,V,W − u2,V,W) ◦ (I + V + W),

where V|Σ := vnnΣ and W|Γ := wnnΓ.
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Sensitivity analysis

Corollary

Under the same assumptions as in Theorem 1, the derivative of W∗(V)

in direction V̂ at V = 0 in Cm,αb (R2,R2) is such that

DVW∗(0; V̂) = −µ−1ū(V̂)nΓ on Γ∗(ω),

where ū(V̂) solves

−∆ū(V̂) = 0 in Ω∗(ω) \ ω,

ū(V̂) = −∂nuV̂ · nΣ on Σ,

∂nū(V̂) +Hū(V̂) = 0 on Γ∗(ω),
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Monotonicity

Theorem (Monotonicity)

Let Ω and ω satisfy the assumptions of Theorem 1 and let
V̂ ∈ Cm,αb (R2,R2), m ≥ 2. Assume µ < 0, V̂(x) · n(x) ≤ 0 for all x ∈ Σ

and there exists x ∈ Σ such that V̂(x) · n(x) < 0, then

Ŵ∗(x) · n(x) > 0 for all x ∈ Γ.

Remark

The convexity of Ω holds whenever ω is convex.

Remark

Under the assumptions of Theorem 1 this leads to the monotonicity for
the set inclusion of Ω∗(ω) with respect to a convex ω for small
perturbations of ω.
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Shape derivative of K1

Theorem

Let ω ⊂ R2 be a bounded domain, with a boundary of class C2,α, and let
V ∈ C2,α

b (R2,R2) be given. Assume H ≥ 0 on Γ∗(ω). Then the shape
gradient ∇K1(ω) of the cost K1 can be expressed as

∇K1(ω) = ∇p · ∇u ∈ C1,α(Σ),

where all expressions are evaluated on Σ, and the adjoint state p satisfies

−∆p = 0 in Ω∗(ω) \ ω,
p = 0 on Σ,

∂np+Hp = −µ−11Ec + µ−11E on Γ∗(ω).

Control of free boundaries A. Laurain



Bernoulli problem Control of droplet footprint

Proof (shape derivative of K1)

For an arbitrary W ∈ C2,α
b (R2,R2):

dJ1(Ω;W) =

∫
Γ∩Ec

W · n ds+

∫
Γ∩E
−W · n ds.

Since K1(ωV) = J1((I + W∗(V))(Ω∗(ω))) we may apply the chain rule

dK1(ω; V̂) = dJ1(Ω∗(ω);DVW∗(0; V̂))

=

∫
Γ∗∩Ec

−µ−1u′ ds+

∫
Γ∗∩E

µ−1u′ ds

=

∫
Γ∗

(−µ−11Ec + µ−11E)u′ ds.

Using the adjoint state p and Green’s formula in Ω∗(ω) \ ω we obtain

dK1(ω; V̂) =

∫
Σ

∇p · ∇u V̂ · n ds
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Shape derivative for K2

Theorem

Let ω ⊂ R2 be a bounded domain, with a boundary of class C2,α, and let
V ∈ C2,α

b (R2,R2) be given. Assume H ≥ 0 on Γ∗(ω). Then

dK2(ω, V̂) =

∫
Σ

[∇u · ∇p+∇pl · ∇ul]V̂ · n ds,

and the adjoint states pl and p satisfy

−∆pl = −(u− ul) in E \ ω,
pl = 0 on Σ,

pl = 0 on ∂E,

−∆p = u1Ω∗(ω)∩Ec + (u− ul)1E∩ωc in Ω∗(ω) \ ω,
p = 0 on Σ,

∂np+Hp = 0 on Γ∗(ω),
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Algorithm

Numerical results by Henry Kasumba.

Solve the optimization problems using an iterative process.

Find a solution to the free boundary problem (Fω) first.

Then proceed to the minimization of K1 or K2 using a boundary
variation technique.

Use the negative shape gradients Vi = −∇Ki(ω)n on Σ as a
descent direction, they need to be extended to the entire domain for
the numerical method.

Introduce an extension of Vi over the entire domain Ω∗ \ω such that

dKi(ω;Vi) =

∫
Σ

∇Ki(ω)Vi ·n ds = −
∫

Ω∗\ω
|DVi|2+|Vi|2 dx < 0

which yields a descent direction for the cost functionals Ki, i = 1, 2.
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Sensitivity analysis

Investigate the effect of increasing the value of µ while the target
boundary ΓT remains fixed.

The initial Σ is a circle of radius 1 while Γ is a circle of radius C.

The initial cost is K2(ω(0)) ≈ 0.1071.
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(a) Target and initial shape
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(b) Target and final shape

Figure : Target E, initial ω(0),Ω∗(ω(0)) and final shapes ω(final),Ω∗(ω(final))
using K2 with µ = −3. The final value of the cost K2 after 111 optimization
iterations and 7 mesh regenerations is found to be 6× 10−5.
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Sensitivity analysis

Next, set µ = −1.8

We choose the same initialization.

After 120 iterations the boundary Σ intersects itself at the origin.
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(a) Target and final shapes (b) Final mesh

Figure : Target shape E and final shapes ω(final),Ω∗(ω(final)) using K2

with µ = −1.8, initial value: K2(ω(0)) ≈ 0.128, final value:
K2(ωfinal) ≈ 3.28× 10−4.
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Sensitivity analysis

In this example we check whether there exists a domain ω ∈ Uad
such that Γ∗(ω) is as close as possible to ΓT not of class C∞.
We minimize K2 with ∂E a square with rounded corners.
The target is not of class C∞. We set µ = −1. Σ is initialized using
a circle of radius 1 and Γ using a circle of radius C.

(a) Ω∗(ω(0)) \ ω(0) (b) Target E \ ω(0)
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Figure : Initial domains and target E
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Sensitivity analysis

The target ΓT is not reached exactly. Some of the optimization
variables attained the lower and upper bounds.
The non-existence of ω ∈ Uad usually leads to oscillations of ω.
Since we use a regularized velocity field, these oscillations of the
inner boundary do not occur.
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Figure : Initial and final shapes of the free boundary using K2. Initial value :
K2(ω(0)) ≈ 0.0954102. Final value after 20 optimization steps
K2(ω(final)) ≈ 1.1067× 10−3.
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Summary

The shape sensitivity analysis for the control of free boundaries can
be rigorously justified for the Bernoulli problem.

The control can be any parameter of the problem: other boundaries,
boundary conditions, coefficients ...

The existence of an induced vector field W∗ depends on good
properties of the free boundary (existence, uniqueness, regularity,
continuity ...) and also on the well-posedness of the PDE for the
derivative of W∗.

The shape derivative of the cost functional requires only the first
derivative of W∗, given by the solution of a certain PDE. In general,
the well-posedness of this PDE is an issue.
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Liquid And Cell Patterning

http://levkingroup.com/biofuctional-polymer-surfaces.html

Applications:

Control the shape of sessile droplets on substrates by surface tension
(lab-on-a-chip).

Help direct the growth of biofilms and cell cultures in droplets by
affecting nutrient uptake and setting desired shape.

Affect film deposition (patterning) through droplet shape and
evaporation.

Droplet lenses.
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Controlling Droplet Shape

Goal: Control the shape of the footprint Γs of a droplet by
controlling the substrate surface tension.

We are able to control the contact angle between the droplet and
the substrate on the contact line Σ which is related to the “slope”
of the surface Γ.
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Energy of Droplets With Surface Tension

Equilibrium Model:

Free energy of droplet Ω:

A(Ω) =

∫
Γs

γs +

∫
Γ

γ +

∫
Γs,g

γs,g −
∫

Ω

G(x),

γs, γ, γs,g are surface tension coefficients in C∞(P)

G(x) := g · (x− x0) where g = vector acceleration due to gravity.

Control of free boundaries A. Laurain



Bernoulli problem Control of droplet footprint

Energy of Droplets With Surface Tension

Equilibrium Model:

Lagrangian for the volume constraint:

L(Ω, p0) = A(Ω)− p0 (|Ω| − Cp)
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Equilibrium

Sensitivity:

Here the shape derivatives γ′s(V) = γ′(V) = γ′s,g(V) = G′(V) ≡ 0

Using the shape derivative formulae:

DΩL(Ω, p0;V) =

∫
Σ

(γs − γs,g)bs ·V

+

∫
Γ

γ∇Γ ·V −
∫

Γ

G(x)ν ·V − p0

∫
Γ

ν ·V,

for all smooth shape perturbations V.

At equilibrium we have

DΩL(Ω, p0;V) = 0 for all V.
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Equilibrium

Stationarity - First Order Conditions:

Alternatively it may be written as

DΩL(Ω, p0;V) =

∫
Σ

(γs − γs,g)bs ·V +

∫
Σ

γ bg ·V

+

∫
Γ

γκν ·V −
∫

Γ

G(x)ν ·V − p0

∫
Γ

ν ·V,

Set V = φν where φ : Γ→ R is a smooth function with compact
support on Γ.

γκ−G− p0 = 0, on Γ, κ = total curvature of Γ,

Set V = φbs near Σ with φ smooth and cos θcl = bg · bs.

γ cos θcl + γs − γs,g = 0, on Σ, θcl = contact angle of Γ.
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“Forward” Problem

Surface Tension Control:

Let u = γs − γs,g ∈ C∞(P) be the control variable.

Set γ = 1 for simplicity.

Time March To Equilibrium:

L2-gradient flow: at each “time-step,” Find Vn+1, Xn+1 (at time
tn+1) in Vn(Γ), p0 in R, such that∫

Γ

(Vn+1 · ν)(Y · ν) = −DΩL(Ω, p0;Y) ∀Y in Vn(Γ),

Xn+1 = Xn + δtVn+1,

∫
Γ

Vn+1 · ν = 0,

where Γ is the current (known) domain at time tn.
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Desired Footprint

Objective Functional:

One option:

J(Γs) =
1

2

∫
P

(χ{Γs} − χd)
2,

where χd is the characteristic function of the desired footprint.

Better option:

J(Γs) =
1

2

∫
Σ

φ2, Σ := ∂Γs ≡ ∂Γ.

φ : P → R is the distance function to Σd.
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Desired Footprint

Objective Functional:

One option:

J(Γs) =
1

2

∫
P

(χ{Γs} − χd)
2,

where χd is the characteristic function of the desired footprint.

Better option:

J(Γs) =
1

2

∫
Σ

φ2, Σ := ∂Γs ≡ ∂Γ.

φ : P → R is the distance function to Σd.
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Reduced Functional

Optimization Problem:

Let J (u) := J(Γs(u)).

Solve this problem:

minimize J (u)

subject to u ∈ C∞(P), |u| ≤ 1− %,

where % > 0 is a small parameter

Recall that u = − cos θcl.
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Shape Sensitivity

Perturbation:

Let η be a smooth perturbation of the control:

uε = u+ εη.

Parameterize the equilibrium equations:

Find Ω(ε), Γ(ε) and p0(ε) ∈ R such that∫
Σ(ε)

[uε bs(ε) + bg(ε)] ·Y

+

∫
Γ(ε)

(κ(ε)−G(x)− p0(ε))ν(ε) ·Y = 0, ∀Y ∈ V∫
Ω(ε)

1 = C.

This induces a deformation of Γ, which induces a flow velocity
W∗ = W∗(ε) ∈ V.
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Sensitivity of the free boundary Γ

Theorem

Assume there exists Γ, Σ of class C∞ solutions of the free boundary
problem for some u ∈ C∞(P). Then there exists an open neighbourhood
E of 0 in R and a function

E 3 ε 7→ (p0(ε),W∗(ε)) ∈ R× C∞(R3,R3)

of class C∞ such that ΓW∗(ε) and ΣW∗(ε) are solutions of the free
boundary problem corresponding to uε = u+ εη for all ε ∈ E and
W∗(0) = 0.
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Sensitivity of the free boundary Γ

Corollary

Assume there exists Γ, Σ of class C∞(P) solutions of the free boundary
problem for some u ∈ C∞. Then the derivative of W∗(ε) at ε = 0 in
direction η is given by

DεW
∗(0)(η) = A−1(η)

where

A : C∞(P)→ C∞(Γ,R)

η 7→Wν(η).

is the solution operator corresponding to

−∆ΓWν − (ν · ∇G)Wν − q0 = 0 on Γ, such that

∫
Γ

Wν = 0,

bg · ∇ΓWν = − η

sin θcl
on Σ.
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Shape derivative of the cost functionals

Consider two functionals

J(Γs) =
1

2

∫
P

(χ{Γs} − χd)
2,

J(Γs) =
1

2

∫
Σ

φ2.

where χd is the characteristic function of the desired footprint.

φ : P → R is the distance function to Σd.

Reduced functionals

Ji(u) := Ji(Γs(u)), i = 1, 2.
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Shape derivative of the cost functionals

Theorem (Shape Derivative of J1)

Assume there exists Γ, Σ of class C∞ solutions of the free boundary
problem for some u ∈ C∞(P). Then the shape derivative of J1 is

DJ1(u; η) = −
∫

Σ

η

sin θcl
Zν ,

where the adjoint states Zν , r0 satisfy

−∆ΓZν − (ν · ∇G)Zν − r0 = 0 on Γ, such that

∫
Γ

Zν = 0,

bg · ∇ΓZν =
ζ

sin θcl
on Σ,

where ζ(x) = −1 in Γd and ζ(x) = 1 in Γcd.
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Shape derivative of the cost functionals

Theorem (Shape Derivative of J2)

Assume there exists Γ, Σ of class C∞ solutions of the free boundary
problem for some u ∈ C∞(P). Then the shape derivative of J2 is

DJ2(u; η) = −
∫

Σ

η

sin θcl
Zν ,

where the adjoint states Zν , r0 satisfy

−∆ΓZν − (ν · ∇G)Zν − r0 = 0 on Γ, such that

∫
Γ

Zν = 0,

bg · ∇ΓZν =
1

2 sin θcl
[(bs · ∇)φ2 + κΣφ

2] on Σ.
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Numerical results

Numerical results by Shawn W. Walker.

Videos: Ellipse Footprint, Square Footprint, Clover Footprint

−2 −1 0 1 2 −2

0

2

0

1

2

 

Y

X

Optimization Index = 360 / 360

 

Z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−2 −1 0 1 2 −2

0

2

0

1

2

 

Y

X

Optimization Index = 310 / 310

 
Z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure : Optimal droplet shapes for the square (left) and the clover (right).
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Numerical results

−1
−0.5

0
0.5

1 −1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

Y

Optimal Control

X

u

−1

0

1

−1

0

1

−1.5

−1

−0.5

0

0.5

1

1.5

X

Optimal Control

Y

u

−1

0

1 −1

0

1
−1.5

−1

−0.5

0

0.5

1

1.5

Y

Optimal Control

X

u

Figure : Optimal control for the ellipse (left), square (center) and clover (right).
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Optimization History
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Muito obrigado e Feliz Aniversário Jan!
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