A shape optimization approach to the problem of covering a two-dimensional region with minimum-radius identical balls

Antoine Laurain

Instituto de Matemática e Estatística, Universidade de São Paulo.
joint work with: Ernesto G. Birgin, Rafael Massambone, Arthur G. Santana
Concepción 06/2021

Packing of spheres and covering problem

- Sphere packings, lattices and groups J.H. Conway and N.J.A. Sloane.
- The packing and covering problems in the whole space are kind of dual.
- The solutions to these problems often involve lattices.
- Kepler conjecture (3D) solved by Thomas Hales in 1998.
- Optimal packing in 8D solved by Maryna Viazovska in 2016.

(a)

Figure 2.1. Covering the plane with circles. In (a) the centers belong to the square lattice $\mathbf{Z}^{\mathbf{2}}$, in (b) they belong to the hexagonal lattice. (b) is a more efficient or thinner covering

Covering problem

- We consider the problem of covering a subset A of \mathbb{R}^{2} (not the whole plane).
- $A \subset \mathbb{R}^{2}$ and $\Omega(\boldsymbol{x}, r)=\cup_{i=1}^{m} B\left(x_{i}, r\right)$ with $\boldsymbol{x}:=\left\{x_{i}\right\}_{i=1}^{m}$.
- Find $(\boldsymbol{x}, r) \in \mathbb{R}^{2 m+1}$ such that $A \subset \Omega(\boldsymbol{x}, r)$ with minimum r.
- Optimization formulation:

$$
\underset{(\boldsymbol{x}, r) \in \mathbb{R}^{2 m+1}}{\operatorname{Minimize}} r \text { subject to } G(\boldsymbol{x}, r)=0,
$$

where

$$
G(\boldsymbol{x}, r):=\operatorname{Vol}(A)-\operatorname{Vol}(A \cap \Omega(\boldsymbol{x}, r))
$$

- $G(\boldsymbol{x}, r)=0$ if and only if $A \subset \Omega(\boldsymbol{x}, r)$ up to a set of zero measure, i.e., when $\Omega(\boldsymbol{x}, r)$ covers A.

Covering problem

(a)

(b)

Figure: (a) represents a region A (orange color) to be covered by a union of balls $\Omega(\boldsymbol{x}, r)$. (b) represents, in red, $\partial \Omega(\boldsymbol{x}, r) \cap A$. Each $\mathcal{A}_{i}:=\partial B\left(x_{i}, r\right) \cap \partial \Omega(\boldsymbol{x}, r) \cap A$ corresponds to the red arcs intersecting $\partial B\left(x_{i}, r\right)$. In this example, most sets \mathcal{A}_{i} contain two or three maximal arcs and there is only one \mathcal{A}_{i} with four maximal arcs.

Some important notations

- Given $x, y \in \mathbb{R}^{n}, x \cdot y=x^{\top} y \in \mathbb{R}$ and $x \otimes y=x y^{\top} \in \mathbb{R}^{n \times n}$.
- $B\left(x_{i}, r\right)$ denotes an open ball with center $x_{i} \in \mathbb{R}^{2}$ and radius r.
- For a sufficiently smooth set $S \subset \mathbb{R}^{2}, \nu_{S}(z)$ denotes the unitary-norm outwards normal vector to S at z.
- $\tau_{S}(z)$ is the unitary-norm tangent vector to ∂S at z (pointing counter-clockwise).
- When $S=B\left(x_{i}, r\right)$ we use $\nu_{i}(z):=\nu_{B\left(x_{i}, r\right)}$ and $\tau_{i}(z):=\tau_{B\left(x_{i}, r\right)}$.
- For intersection points $z \in \partial S \cap B\left(x_{i}, r\right)$, we also use the notation $\nu_{-i}(z):=\nu_{S}(z)$.

Second-order derivative of G

Figure: The set $\mathcal{A}_{i}=\partial B\left(x_{i}, r\right) \cap \Omega(\boldsymbol{x}, r) \cap A$ is composed of two arcs (in red). If $z \in \partial B\left(x_{i}, r\right) \cap \partial B\left(x_{\ell}, r\right)$ for some $\ell \neq i$, as for $z=w$, then $\nu_{-i}(z)=\nu_{\ell}(z)$, while if $z \in \partial B\left(x_{i}, r\right) \cap \partial A$, as for $z \in\{u, v\}$, then $\nu_{-i}(z)=\nu_{A}(z)$.

First and second-order derivative of G

- The derivatives of G can be computed using techniques of shape calculus [Delfour, Henrot, Murat, Pierre, Simon, Sokolowski, Zolésio].
- Assuming (\boldsymbol{x}, r) is non-degenerate:

$$
\nabla G(\boldsymbol{x}, r)=-\left(\int_{\mathcal{A}_{1}} \nu_{1}(z) d z, \cdots, \int_{\mathcal{A}_{m}} \nu_{m}(z) d z, \int_{\partial \Omega(\boldsymbol{x}, r) \cap A} d z\right)^{\top}
$$

with $\mathcal{A}_{i}:=\partial B\left(x_{i}, r\right) \cap \partial \Omega(\boldsymbol{x}, r) \cap A$.

- The Hessian of G is given by:

$$
\nabla^{2} G(\boldsymbol{x}, r)=\left(\begin{array}{cc}
\nabla_{\boldsymbol{x}}^{2} G(\boldsymbol{x}, r) & \nabla_{\boldsymbol{x}, r}^{2} G(\boldsymbol{x}, r) \\
\nabla_{\boldsymbol{x}, r}^{2} G(\boldsymbol{x}, r)^{\top} & \nabla_{r}^{2} G(\boldsymbol{x}, r)
\end{array}\right)
$$

with the blocks $\nabla_{\boldsymbol{x}}^{2} G(\boldsymbol{x}, r) \in \mathbb{R}^{2 m \times 2 m}, \nabla_{\boldsymbol{x}, r}^{2} G(\boldsymbol{x}, r) \in \mathbb{R}^{2 m}$, and $\nabla_{r}^{2} G(\boldsymbol{x}, r)=\partial_{r}^{2} G(\boldsymbol{x}, r) \in \mathbb{R}$.

Second-order derivative of G

- \mathcal{A}_{i} is a finite union of arcs of the circle $\partial B\left(x_{i}, r\right)$.
- \mathbb{A}_{i} denotes the set of pairs (v, w) that represent the arcs in \mathcal{A}_{i}.
- $\mathbb{A}_{i}=\emptyset$ if \mathcal{A}_{i} is a full circle.
- The scalar $\nabla_{r}^{2} G(\boldsymbol{x}, r)$ is given by:

$$
\nabla_{r}^{2} G(\boldsymbol{x}, r)=-\frac{\operatorname{Per}(\partial \Omega(\boldsymbol{x}, r) \cap A)}{r}-\sum_{i=1}^{m} \sum_{(v, w) \in \mathbb{A}_{i}} \llbracket \frac{|L(z)|-\nu_{-i}(z) \cdot \nu_{i}(z)}{\nu_{-i}\left(z \cdot \tau_{i}(z)\right.} \rrbracket_{v}^{w}
$$

- $\llbracket \Phi(z) \rrbracket_{v}^{w}:=\Phi(w)-\Phi(v)$
- For an extreme z of an arc represented by $(v, w) \in \mathbb{A}_{i}$,

$$
L(z)=\left\{\ell \in\{1, \ldots, m\} \backslash\{i\} \mid z \in \partial B\left(x_{\ell}, r\right)\right\} .
$$

Second-order derivative of G

- Matrix $\nabla_{\boldsymbol{x}}^{2} G(\boldsymbol{x}, r)$ is given by the 2×2 diagonal blocks

$$
\begin{aligned}
\partial_{x_{i} x_{i}}^{2} G(\boldsymbol{x}, r) & =\frac{1}{r} \int_{\mathcal{A}_{i}}-\nu_{i}(z) \otimes \nu_{i}(z)+\tau_{i}(z) \otimes \tau_{i}(z) d z \\
& +\sum_{(v, w) \in \mathbb{A}_{i}} \llbracket \frac{\nu_{-i}(z) \cdot \nu_{i}(z)}{\nu_{-i}(z) \cdot \tau_{i}(z)} \nu_{i}(z) \otimes \nu_{i}(z) \rrbracket_{v}^{w}
\end{aligned}
$$

and the 2×2 off-diagonal blocks

$$
\partial_{x_{i} x_{\ell}}^{2} G(\boldsymbol{x}, r)=\sum_{v \in \mathcal{I}_{i \ell}} \frac{\nu_{i}(v) \otimes \nu_{\ell}(v)}{\nu_{\ell}(v) \cdot \tau_{i}(v)}-\sum_{w \in \mathcal{O}_{i \ell}} \frac{\nu_{i}(w) \otimes \nu_{\ell}(w)}{\nu_{\ell}(w) \cdot \tau_{i}(w)},
$$

- $\mathcal{I}_{i \ell}=\left\{v \in \partial B\left(x_{\ell}, r\right) \mid(v, \cdot) \in \mathbb{A}_{i}\right\}$
- $\mathcal{O}_{i \ell}=\left\{w \in \partial B\left(x_{\ell}, r\right) \mid(\cdot, w) \in \mathbb{A}_{i}\right\}$
- Note that $\mathcal{I}_{i \ell}=\mathcal{O}_{i \ell}=\emptyset$ for all $\ell \neq i$ if $\mathbb{A}_{i}=\emptyset$.

Second-order derivative of G

- $\nabla_{\boldsymbol{x}, r}^{2} G(\boldsymbol{x}, r)$ is given by the 2-dimensional arrays

$$
\begin{aligned}
\partial_{x_{i} r}^{2} G(\boldsymbol{x}, r) & =-\frac{1}{r} \int_{\mathcal{A}_{i}} \nu_{i}(z) d z \\
& +\sum_{(v, w) \in \mathbb{A}_{i}} \llbracket \frac{\nu_{-i}(z) \cdot \nu_{i}(z)}{\nu_{-i}(z) \cdot \tau_{i}(z)} \nu_{i}(z)-\sum_{\ell \in L(z)} \frac{\nu_{i}(z)}{\tau_{i}(z) \cdot \nu_{\ell}(z)} \rrbracket_{v}^{w}
\end{aligned}
$$

- For an extreme z of an arc represented by $(v, w) \in \mathbb{A}_{i}$,

$$
L(z)=\left\{\ell \in\{1, \ldots, m\} \backslash\{i\} \mid z \in \partial B\left(x_{\ell}, r\right)\right\} .
$$

Center perturbations

Center perturbations

Radius perturbations

Construction of bi-Lipschitz mappings T_{t}

- How can we build bi-Lipschitz mappings

$$
T_{t}: \Omega(\boldsymbol{x}, r) \rightarrow \Omega(\boldsymbol{x}+t \delta \boldsymbol{x}, r) \text { and } T_{t}: \Omega(\boldsymbol{x}, r) \rightarrow \Omega(\boldsymbol{x}, r+t \delta r) ?
$$

- First, we observe that $\partial \Omega(\boldsymbol{x}, r)$ contains singular points (the circle intersections) and regular points.
- The motion of the singular points is fully determined by the center or radius perturbations.
- For instance, the motion of an intersection point in $\partial B\left(x_{i}+t \delta x_{i}, r\right) \cap \partial B\left(x_{j}+t \delta x_{j}, r\right)$ can be fully determined, for sufficiently small t, using the implicit function theorem.
- The motion of the regular points is underdetermined. Roughly speaking, one direction of T_{t} is prescribed (such as $t \delta x_{i}$ for center perturbations), while the orthogonal direction can be choosen "freely".

Construction of bi-Lipschitz mappings T_{t}

- Thus, we are free to choose this orthogonal direction of T_{t} at regular points, as long as these constraints are satisfied:
- T_{t} must be bi-Lipschitz
- The value of T_{t} is prescribed at the singular points.
- $T_{t}(\Omega(\boldsymbol{x}, r) \cap A)=\Omega(\boldsymbol{x}+t \delta \boldsymbol{x}, r) \cap A$ or $T_{t}(\Omega(\boldsymbol{x}, r) \cap A)=\Omega(\boldsymbol{x}, r+t \delta r) \cap A$.
- Since $\partial \Omega(\boldsymbol{x}, r)$ is a union of arcs, we can use local polar coordinates on each $B\left(x_{i}, r\right)$ to define the missing direction of T_{t} at regular points.
- Then we extend T_{t} to $\Omega(\boldsymbol{x}, r) \cap A$, in a way that preserves the bi-Lipschitz property of T_{t}.

Shape derivative for radius perturbations

- We can actually build a bi-Lipschitz mapping

$$
T_{t}: \Omega(\boldsymbol{x}, r) \cap A \rightarrow \Omega(\boldsymbol{x}, r+t \delta r) \cap A .
$$

- T_{t} allows us to use the following change of variables:

$$
\begin{aligned}
G(\boldsymbol{x}, r+t \delta r) & =\operatorname{Vol}(A \backslash \Omega(\boldsymbol{x}, r+t \delta r)) \\
& =\operatorname{Vol}(A)-\operatorname{Vol}(A \cap \Omega(\boldsymbol{x}, r+t \delta r)) \\
& =\operatorname{Vol}(A)-\int_{T_{t}(\Omega(\boldsymbol{x}, r) \cap A)} d z \\
& =\operatorname{Vol}(A)-\int_{\Omega(\boldsymbol{x}, r) \cap A}\left|\operatorname{det} D T_{t}(z)\right| d z .
\end{aligned}
$$

- Then the derivative is, with $V:=\left.\partial_{t} T_{t}\right|_{t=0}$,

$$
\begin{aligned}
&\left.\frac{d}{d t} G(\boldsymbol{x}, r+t \delta r)\right|_{t=0}=-\int_{\Omega(\boldsymbol{x}, r) \cap A} \operatorname{div} V(z) d z \\
&=-\int_{\partial(\Omega(\boldsymbol{x}, r) \cap A)} V(z) \cdot \nu(z) d z=-\delta r \int_{\partial \Omega(\boldsymbol{x}, r) \cap A} d z
\end{aligned}
$$

Other shape derivatives

- The property $V(z) \cdot \nu(z)=\delta r$ on $\partial \Omega(\boldsymbol{x}, r) \cap A$ comes from the explicit construction of T_{t} on $\partial(\Omega(\boldsymbol{x}, r) \cap A)$.
- The calculation works in a similar way for center perturbations and for second-order derivatives.
- The main task is to build the appropriate T_{t} for each type of perturbation, and compute the corresponding $V:=\left.\partial_{t} T_{t}\right|_{t=0}$.

Other shape derivatives

- These derivatives were obtained assuming (\boldsymbol{x}, r) is non-degenerate, i.e., when the following assumptions hold.
- Assumption 1. The centers $\left\{x_{i}\right\}_{i=1}^{m}$ satisfy $\left\|x_{i}-x_{j}\right\| \notin\{0,2 r\}$ for all $1 \leq i, j \leq m, i \neq j$ and $\partial B\left(x_{i}, r\right) \cap \partial B\left(x_{j}, r\right) \cap \partial B\left(x_{k}, r\right)=\emptyset$ for all $1 \leq i, j, k \leq m$ with i, j, k pairwise distinct.
- Assumption 2. $\Omega(\boldsymbol{x}, r)$ and A are compatible.
- This yields the following decomposition, with \bar{k} independent of t :

$$
\partial \Omega(\boldsymbol{x}+t \delta \boldsymbol{x}, r) \cap \boldsymbol{A}=\bigcup_{k=1}^{\bar{k}} \mathcal{S}_{k}(t),
$$

where $\mathcal{S}_{k}(t)$ are arcs parameterized by an angle aperture $\left[\theta_{k, v}(t), \theta_{k, w}(t)\right]$, and $t \mapsto \theta_{k, v}(t), t \mapsto \theta_{k, w}(t)$ are continuous.

Compatibility

Figure: Compatibility of a ball and a square. From left to right: (a) compatible (b) compatible (c) not compatible (d) not compatible.

Example of degenerate case: two tangent disks

Figure: Two tangent disks $B\left(x_{1}, r\right)$ and $B\left(x_{2}, r\right)$ may either merge if $\left(x_{1}-x_{2}\right) \cdot\left(\delta x_{1}-\delta x_{2}\right)<0$ or have an empty intersection if $\left(x_{1}-x_{2}\right) \cdot\left(\delta x_{1}-\delta x_{2}\right)>0$.

Example of degenerate case: three disks

Analysis of singular cases

- Other singular cases: two superposed disks, a disk tangent to ∂A, etc ...
- Singular cases can be investigated using asymptotic analysis: G is sometimes differentiable, but seems to never be twice differentiable.
- Gateaux semidifferentiablity of the components of ∇G can often be proved.

Algorithm 1

- After discretization, the problem becomes a constrained nonlinear programming problem (with a linear objective function and a single difficult nonlinear constraint) of the form

$$
\text { Minimize } f(\boldsymbol{x}, r):=r \text { subject to } G_{h}(\boldsymbol{x}, r)=0 \text { and } r \geq 0
$$

- We considered the safeguarded Augmented Lagrangian (AL) method Algencan [Andreani, Birgin, Martínez, Schuverdt].
- Algencan is based on the PHR AL function, in this case:

$$
\begin{equation*}
L_{\rho}(\boldsymbol{x}, r, \lambda)=f(\boldsymbol{x}, r)+\frac{\rho}{2}\left[G_{h}(\boldsymbol{x}, r)+\frac{\lambda}{\rho}\right]^{2} \tag{1}
\end{equation*}
$$

for all $\rho>0, r \geq 0$, and $\lambda \in \mathbb{R}$.

- Each iteration of the method consists in the approximate minimization of (1) subject to $r \geq 0$ followed by the update of the Lagrange multiplier λ and the penalty parameter ρ.

Numerical results for Algorithm 1

Figure: Solutions found for covering two-squares region with $m=4,9,12$, peaked star region with $m=4,5,9$, ring, half-ring, and two-half-rings regions with $m=3,7,11$, and disconnected region with $m=3,7,15$.

Numerical results for Algorithm 1

Figure: Solutions found for covering heart-shape and soap-shape regions with $m=3,7,11,15$, and disconnected region with $m=3,7,15$.

Performance metrics for Algorithm 1

Alg. 1.1 computes G (complexity $O\left(1 / h^{2}\right)$), Alg. 1.2 computes ∇G (complexity $O(1 / h)$), "trial" is the number of the initial guess yielding the best solution, "outit" and "innit" are the number of outer and inner iterations of the AL optimization method.

Region A	m	r^{*}	trial	outit	innit	Alg. 1.1	Alg. 1.2	CPU Time
	3	0.7949	100	20	155	2188	249	59.08
	7	0.5366	69	15	50	214	117	7.92
	11	0.4100	89	12	68	303	130	12.77
	15	0.3476	78	13	77	311	138	15.46
	3	0.6578	70	12	76	402	134	4.61
	7	0.4754	30	13	119	1228	185	20.11
	11	0.3564	61	13	72	261	132	6.12
	15	0.3154	69	13	80	447	140	12.77
	4	0.3810	91	11	40	222	90	2.78
	9	0.2474	70	11	45	197	94	3.18
	12	0.2064	32	10	66	346	112	6.16
	4	0.2317	82	20	136	2221	230	14.55
	5	0.1892	32	10	61	251	107	1.70
	9	0.1300	59	10	56	248	107	1.84
	3	0.4295	12	10	40	186	86	0.49
	7	0.2149	36	10	35	155	78	0.58
	11	0.1441	23	12	94	337	152	1.50

Algorithm 1

(c) $h=10^{-3}$
(d) $h=10^{-4}$
(a) $h=0.1$

(e) $h=0.1$

(b) $h=10^{-2}$

(f) $h=10^{-2}$

(g) $h=10^{-3}$

(h) $h=10^{-4}$

Figure: Solutions found varying $h \in\left\{0.1,10^{-2}, 10^{-3}, 10^{-4}\right\}$ in problems (a-d) "two squares" and (e-h) "peaked star" with $m=9$. The peaked star requires a smaller h to cover its small thin features.

Algorithm 1

Figure: An example of a degenerate case: A is the union of two tangent unitary-diameter balls to be covered by $m=2$ balls. In this case, ∇G does not exist. Even though this singular case is not covered by the theory, the solution, which is the set A itself, was found with a single run of the method.

Algorithm 2

- Algorithm 1 allows to find coverings of general shapes A, but is relatively slow when a fine discretization is required (i.e., a small h). This occurs when A presents small thin features. Algorithm 1 only uses G and ∇G.
- Algorithm 2 deals with the case $A=\cup_{j=1}^{p} A_{j}$ and $\left\{A_{j}\right\}_{j=1}^{p}$ are non-overlapping convex polygons. Algorithm 2 uses $G, \nabla G$ and $\nabla^{2} G$. In this case $G, \nabla G$ and $\nabla^{2} G$ can be computed analytically which leads to a fast and accurate algorithm.

Algorithm 2

- Compute Voronoi diagram with cells $\left\{V_{i}\right\}_{i=1}^{m}$ associated with the balls centers x_{1}, \ldots, x_{m}.
- Compute convex polygons $W_{i j}=A_{j} \cap V_{i}$ and $S_{i j}=W_{i j} \cap B\left(x_{i}, r\right)$ for $j=1, \ldots, p$ and $i=1, \ldots, m$.
- $\mathcal{K}_{A_{j}}=\left\{i \in\{1, \ldots, m\} \mid S_{i j} \neq \emptyset\right\}$
- Partition $A_{j} \cap \Omega(\boldsymbol{x}, r)=\bigcup_{i \in \mathcal{K}_{A_{j}}} S_{i j}, \quad j=1, \ldots, p$.

Figure: (left) $A=\cup_{j=1}^{p} A_{j}$ with $p=2$ and $\Omega(\boldsymbol{x}, r)=\cup_{i=1}^{m} B\left(x_{i}, r\right)$ with $m=10$. (right) Voronoi diagram and sets $S_{i j}$.

Algorithm 2

- Using the sets $S_{i j}, G, \nabla G$ and $\nabla^{2} G$ can be computed analytically.
- $G(\boldsymbol{x}, r)=\operatorname{Vol}(A)-\operatorname{Vol}(A \cap \Omega(\boldsymbol{x}, r))=\operatorname{Vol}(A)-\sum_{(i, j) \in \mathcal{K}} \operatorname{Vol}\left(S_{i j}\right)$.
- Using Green's Theorem,

$$
\begin{aligned}
\operatorname{Vol}\left(S_{i j}\right) & =\int_{S_{i j}} d x d y=\int_{\partial S_{i j}} x d y \\
& =\sum_{[v, w] \in \mathbb{E}\left(S_{i j}\right)} \int_{0}^{1} x_{\mathcal{E}}(t) d y_{\mathcal{E}}(t)+\sum_{(v, w) \in \mathbb{A}\left(S_{i j}\right)} \int_{\theta_{v}}^{\theta_{w}} x_{\mathcal{A}}(\theta) d y_{\mathcal{A}}(\theta)
\end{aligned}
$$

and this can be computed analytically.

- Here $\mathbb{E}\left(S_{i j}\right)$ is the set of edges of $\partial S_{i j}$, and $\mathbb{A}\left(S_{i j}\right)$ is the set of arcs of $\partial S_{i j}$.
- Works in a similar way for ∇G and $\nabla^{2} G$.

Algorithm 2

- The algorithms for computing $G, \nabla G$ and $\nabla^{2} G$ depend on the computation of \mathbb{E}_{i} and \mathbb{A}_{i} for $i=1, \ldots, m$.
- Computing \mathbb{E}_{i} and \mathbb{A}_{i} requires to compute the Voronoi diagram (using Fortune's algorithm) and to compute $W_{i j}=V_{i} \cap A_{j}$ and $S_{i j}=W_{i j} \cap B\left(x_{i}, r\right)$.
- The worst-case time complexity of Algorithm 2 is $\mathcal{O}\left(m \log m+m \sum_{j=1}^{p} e_{A_{j}}\right)$, where $e_{A_{j}}$ is the number of sides of A_{j}.

Numerical results for Algorithm 2

(a) Region

(i) $m=70$

(b) Partition

(j) $m=80$

(c) $m=10$

(k) $m=90$

(d) $m=20$

(I) $m=100$

Figure: (a) Sketch of America, partitioned into $p=34$ convex polygons. Pictures from (c) to (I) display the solutions for $m \in\{10, \ldots, 100\}$.

Numerical results for Algorithm 2

(a) Region

(d) $m=20$

(j) $m=80$

(b) Partition

(e) $m=30$

(k) $m=90$

(c) $m=10$

(f) $m=40$

(I) $m=100$

Conclusion

- Shape-Newton method in a nonsmooth setting.
- Algorithm 1 is based on first-order derivative and works for general shapes A.
- Algorithm 2 is based on first- and second-order derivatives and works for the union of non-overlapping convex polygons. Much faster and more accurate than Algorithm 1.
- It seems that the assumptions used to derive $\nabla^{2} G$ cannot be weakened.
- A shape optimization approach to the problem of covering a two-dimensional region with minimum-radius identical balls E. G. Birgin, A. Laurain, R. Massambone, and A. G. Santana SIAM Journal on Scientific Computing 43(3):A2047-A2078, 2021
- A Shape-Newton approach to the problem of covering with identical balls.
E. G. Birgin, A. Laurain, R. Massambone, and A. G. Santana arXiv:2106.03641, 2021

Outlook

- Extension to PDE constraints in 2D \rightarrow the construction for T_{t} is the same.
- Extension to 3D \rightarrow a new approach needs to be found to build T_{t}.
- Extension to arbitrary shapes instead of balls \rightarrow a new approach needs to be found to build T_{t}.

Outlook

- Extension to PDE constraints in 2D \rightarrow the construction for T_{t} is the same.
- Extension to 3D \rightarrow a new approach needs to be found to build T_{t}.
- Extension to arbitrary shapes instead of balls \rightarrow a new approach needs to be found to build T_{t}.

THANKS FOR YOUR ATTENTION!

