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Packing of spheres and covering problem
I Sphere packings, lattices and groups

J.H. Conway and N.J.A. Sloane.
I The packing and covering problems in the whole space are kind

of dual.
I The solutions to these problems often involve lattices.
I Kepler conjecture (3D) solved by Thomas Hales in 1998.
I Optimal packing in 8D solved by Maryna Viazovska in 2016.
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Covering problem

I We consider the problem of covering a subset A of R2 (not the
whole plane).

I A ⊂ R2 and Ω(x , r) = ∪m
i=1B(xi , r) with x := {xi}m

i=1.
I Find (x , r) ∈ R2m+1 such that A ⊂ Ω(x , r) with minimum r .
I Optimization formulation:

Minimize
(x,r)∈R2m+1

r subject to G(x , r) = 0,

where

G(x , r) := Vol(A)− Vol(A ∩ Ω(x , r))

I G(x , r) = 0 if and only if A ⊂ Ω(x , r) up to a set of zero measure,
i.e., when Ω(x , r) covers A.
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Covering problem

(a) (b)

Figure: (a) represents a region A (orange color) to be covered by a union of
balls Ω(x , r). (b) represents, in red, ∂Ω(x , r) ∩ A. Each
Ai := ∂B(xi , r) ∩ ∂Ω(x , r) ∩ A corresponds to the red arcs intersecting
∂B(xi , r). In this example, most sets Ai contain two or three maximal arcs
and there is only one Ai with four maximal arcs.
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Some important notations

I Given x , y ∈ Rn, x · y = x>y ∈ R and x ⊗ y = xy> ∈ Rn×n.
I B(xi , r) denotes an open ball with center xi ∈ R2 and radius r .
I For a sufficiently smooth set S ⊂ R2, νS(z) denotes the

unitary-norm outwards normal vector to S at z.
I τS(z) is the unitary-norm tangent vector to ∂S at z (pointing

counter-clockwise).
I When S = B(xi , r) we use νi (z) := νB(xi ,r) and τi (z) := τB(xi ,r).
I For intersection points z ∈ ∂S ∩ B(xi , r), we also use the notation
ν−i (z) := νS(z).
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Second-order derivative of G

xi

x`

u

v

w

A

ν`(u)

ν−`(u) = νA(u)

νi(v)

νi(w)

ν−i(w) = ν`(w)

ν−i(v) = νA(v)

Figure: The set Ai = ∂B(xi , r) ∩ Ω(x , r) ∩ A is composed of two arcs (in red).
If z ∈ ∂B(xi , r) ∩ ∂B(x`, r) for some ` 6= i , as for z = w , then ν−i (z) = ν`(z),
while if z ∈ ∂B(xi , r) ∩ ∂A, as for z ∈ {u, v}, then ν−i (z) = νA(z).
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First and second-order derivative of G

I The derivatives of G can be computed using techniques of shape
calculus [Delfour, Henrot, Murat, Pierre, Simon, Sokolowski,
Zolésio].

I Assuming (x , r) is non-degenerate:

∇G(x , r) = −
(∫
A1

ν1(z) dz, · · · ,
∫
Am

νm(z) dz,
∫
∂Ω(x,r)∩A

dz
)>

,

with Ai := ∂B(xi , r) ∩ ∂Ω(x , r) ∩ A.
I The Hessian of G is given by:

∇2G(x , r) =

(
∇2

xG(x , r) ∇2
x,r G(x , r)

∇2
x,r G(x , r)> ∇2

r G(x , r)

)
,

with the blocks ∇2
xG(x , r) ∈ R2m×2m, ∇2

x,r G(x , r) ∈ R2m, and
∇2

r G(x , r) = ∂2
r G(x , r) ∈ R.
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Second-order derivative of G

I Ai is a finite union of arcs of the circle ∂B(xi , r).
I Ai denotes the set of pairs (v ,w) that represent the arcs in Ai .
I Ai = ∅ if Ai is a full circle.
I The scalar ∇2

r G(x , r) is given by:

∇2
r G(x , r) = − Per(∂Ω(x,r)∩A)

r −
m∑

i=1

∑
(v ,w)∈Ai

r
|L(z)|−ν−i (z)·νi (z)

ν−i (z)·τi (z)

zw

v

I JΦ(z)Kw
v := Φ(w)− Φ(v)

I For an extreme z of an arc represented by (v ,w) ∈ Ai ,

L(z) = {` ∈ {1, . . . ,m} \ {i} | z ∈ ∂B(x`, r)}.
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Second-order derivative of G

I Matrix ∇2
xG(x , r) is given by the 2× 2 diagonal blocks

∂2
xi xi

G(x , r) =
1
r

∫
Ai

−νi (z)⊗ νi (z) + τi (z)⊗ τi (z) dz

+
∑

(v ,w)∈Ai

s
ν−i (z) · νi (z)

ν−i (z) · τi (z)
νi (z)⊗ νi (z)

{w

v

and the 2× 2 off-diagonal blocks

∂2
xi x`G(x , r) =

∑
v∈Ii`

νi (v)⊗ ν`(v)

ν`(v) · τi (v)
−
∑

w∈Oi`

νi (w)⊗ ν`(w)

ν`(w) · τi (w)
,

I Ii` = {v ∈ ∂B(x`, r) | (v , ·) ∈ Ai}
I Oi` = {w ∈ ∂B(x`, r) | (·,w) ∈ Ai}
I Note that Ii` = Oi` = ∅ for all ` 6= i if Ai = ∅.
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Second-order derivative of G

I ∇2
x,r G(x , r) is given by the 2-dimensional arrays

∂2
xi r G(x , r) = −1

r

∫
Ai

νi (z) dz

+
∑

(v ,w)∈Ai

u

v ν−i (z) · νi (z)

ν−i (z) · τi (z)
νi (z)−

∑
`∈L(z)

νi (z)

τi (z) · ν`(z)

}

~

w

v

I For an extreme z of an arc represented by (v ,w) ∈ Ai ,

L(z) = {` ∈ {1, . . . ,m} \ {i} | z ∈ ∂B(x`, r)}.
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Center perturbations

xi

xj

xi + tδxi

xj + tδxj

Tt

T−1
t
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Center perturbations

Ω(x , r) Ω(x + tδx , r)

= Tt (Ω(x , r))

Tt

T−1
t
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Radius perturbations

xi
r

xi

r + tδr

Tt

T−1
t
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Radius perturbations

Ω(x , r)
Ω(x , r + tδr)

= Tt (Ω(x , r))

Tt

T−1
t
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Construction of bi-Lipschitz mappings Tt

I How can we build bi-Lipschitz mappings
Tt : Ω(x , r)→ Ω(x + tδx , r) and Tt : Ω(x , r)→ Ω(x , r + tδr)?

I First, we observe that ∂Ω(x , r) contains singular points (the circle
intersections) and regular points.

I The motion of the singular points is fully determined by the
center or radius perturbations.

I For instance, the motion of an intersection point in
∂B(xi + tδxi , r) ∩ ∂B(xj + tδxj , r) can be fully determined, for
sufficiently small t , using the implicit function theorem.

I The motion of the regular points is underdetermined. Roughly
speaking, one direction of Tt is prescribed (such as tδxi for
center perturbations), while the orthogonal direction can be
choosen “freely”.
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Construction of bi-Lipschitz mappings Tt

I Thus, we are free to choose this orthogonal direction of Tt at
regular points, as long as these constraints are satisfied:

Tt must be bi-Lipschitz
The value of Tt is prescribed at the singular points.
Tt (Ω(x , r) ∩ A) = Ω(x + tδx , r) ∩ A or
Tt (Ω(x , r) ∩ A) = Ω(x , r + tδr) ∩ A.

I Since ∂Ω(x , r) is a union of arcs, we can use local polar
coordinates on each B(xi , r) to define the missing direction of Tt
at regular points.

I Then we extend Tt to Ω(x , r) ∩ A, in a way that preserves the
bi-Lipschitz property of Tt .
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Shape derivative for radius perturbations
I We can actually build a bi-Lipschitz mapping

Tt : Ω(x , r) ∩ A→ Ω(x , r + tδr) ∩ A.

I Tt allows us to use the following change of variables:

G(x , r + tδr) = Vol(A \ Ω(x , r + tδr))

= Vol(A)− Vol(A ∩ Ω(x , r + tδr))

= Vol(A)−
∫

Tt (Ω(x,r)∩A)

dz

= Vol(A)−
∫

Ω(x,r)∩A
| det DTt (z)|dz.

I Then the derivative is, with V := ∂tTt |t=0,

d
dt

G(x , r + tδr)

∣∣∣∣
t=0

= −
∫

Ω(x,r)∩A
div V (z) dz

= −
∫
∂(Ω(x,r)∩A)

V (z) · ν(z) dz = −δr
∫
∂Ω(x,r)∩A

dz
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Other shape derivatives

I The property V (z) · ν(z) = δr on ∂Ω(x , r) ∩ A comes from the
explicit construction of Tt on ∂(Ω(x , r) ∩ A).

I The calculation works in a similar way for center perturbations
and for second-order derivatives.

I The main task is to build the appropriate Tt for each type of
perturbation, and compute the corresponding V := ∂tTt |t=0.
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Other shape derivatives

I These derivatives were obtained assuming (x , r) is
non-degenerate, i.e., when the following assumptions hold.

I Assumption 1. The centers {xi}m
i=1 satisfy ‖xi − xj‖ /∈ {0,2r} for

all 1 ≤ i , j ≤ m, i 6= j and ∂B(xi , r) ∩ ∂B(xj , r) ∩ ∂B(xk , r) = ∅ for
all 1 ≤ i , j , k ≤ m with i , j , k pairwise distinct.

I Assumption 2. Ω(x , r) and A are compatible.
I This yields the following decomposition, with k̄ independent of t :

∂Ω(x + tδx , r) ∩ A =
k̄⋃

k=1

Sk (t),

where Sk (t) are arcs parameterized by an angle aperture
[θk,v (t), θk,w (t)], and t 7→ θk,v (t), t 7→ θk,w (t) are continuous.
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Compatibility

Figure: Compatibility of a ball and a square. From left to right: (a) compatible
(b) compatible (c) not compatible (d) not compatible.
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Example of degenerate case: two tangent disks

Figure: Two tangent disks B(x1, r) and B(x2, r) may either merge if
(x1 − x2) · (δx1 − δx2) < 0 or have an empty intersection if
(x1 − x2) · (δx1 − δx2) > 0.
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Example of degenerate case: three disks
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Analysis of singular cases

I Other singular cases: two superposed disks, a disk tangent to
∂A, etc ...

I Singular cases can be investigated using asymptotic analysis: G
is sometimes differentiable, but seems to never be twice
differentiable.

I Gateaux semidifferentiablity of the components of ∇G can often
be proved.
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Algorithm 1

I After discretization, the problem becomes a constrained
nonlinear programming problem (with a linear objective function
and a single difficult nonlinear constraint) of the form

Minimize f (x , r) := r subject to Gh(x , r) = 0 and r ≥ 0

I We considered the safeguarded Augmented Lagrangian (AL)
method Algencan [Andreani, Birgin, Martı́nez, Schuverdt].

I Algencan is based on the PHR AL function, in this case:

Lρ(x , r , λ) = f (x , r) +
ρ

2

[
Gh(x , r) +

λ

ρ

]2

, (1)

for all ρ > 0, r ≥ 0, and λ ∈ R.
I Each iteration of the method consists in the approximate

minimization of (1) subject to r ≥ 0 followed by the update of the
Lagrange multiplier λ and the penalty parameter ρ.
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Numerical results for Algorithm 1

r ≈ 0.3810 r ≈ 0.2317 r ≈ 0.4295 r ≈ 0.2465 r ≈ 0.2146

r ≈ 0.2474 r ≈ 0.1892 r ≈ 0.2149 r ≈ 0.1211 r ≈ 0.1122

r ≈ 0.2064 r ≈ 0.1300 r ≈ 0.1441 r ≈ 0.0964 r ≈ 0.0938

Figure: Solutions found for covering two-squares region with m = 4, 9, 12,
peaked star region with m = 4, 5, 9, ring, half-ring, and two-half-rings regions
with m = 3, 7, 11, and disconnected region with m = 3, 7, 15.
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Numerical results for Algorithm 1

r ≈ 0.7949 r ≈ 0.5366 r ≈ 0.4100 r ≈ 0.3476

r ≈ 0.6578 r ≈ 0.4754 r ≈ 0.3564 r ≈ 0.3154

r ≈ 1.7067 r ≈ 1.1774 r ≈ 0.7820

Figure: Solutions found for covering heart-shape and soap-shape regions
with m = 3, 7, 11, 15, and disconnected region with m = 3, 7, 15.
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Performance metrics for Algorithm 1

Alg. 1.1 computes G (complexity O(1/h2)), Alg. 1.2 computes ∇G
(complexity O(1/h)), “trial” is the number of the initial guess yielding
the best solution, “outit” and “innit” are the number of outer and inner
iterations of the AL optimization method.

Region A m r∗ trial outit innit Alg. 1.1 Alg. 1.2 CPU Time
3 0.7949 100 20 155 2188 249 59.08
7 0.5366 69 15 50 214 117 7.92
11 0.4100 89 12 68 303 130 12.77
15 0.3476 78 13 77 311 138 15.46
3 0.6578 70 12 76 402 134 4.61
7 0.4754 30 13 119 1228 185 20.11
11 0.3564 61 13 72 261 132 6.12
15 0.3154 69 13 80 447 140 12.77
4 0.3810 91 11 40 222 90 2.78
9 0.2474 70 11 45 197 94 3.18
12 0.2064 32 10 66 346 112 6.16
4 0.2317 82 20 136 2221 230 14.55
5 0.1892 32 10 61 251 107 1.70
9 0.1300 59 10 56 248 107 1.84
3 0.4295 12 10 40 186 86 0.49
7 0.2149 36 10 35 155 78 0.58
11 0.1441 23 12 94 337 152 1.50
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Algorithm 1

(a) h = 0.1 (b) h = 10−2 (c) h = 10−3 (d) h = 10−4

(e) h = 0.1 (f) h = 10−2 (g) h = 10−3 (h) h = 10−4

Figure: Solutions found varying h ∈ {0.1, 10−2, 10−3, 10−4} in problems
(a–d) “two squares” and (e–h) “peaked star” with m = 9. The peaked star
requires a smaller h to cover its small thin features.

Antoine Laurain A shape optimization approach to the covering problem



Algorithm 1

Figure: An example of a degenerate case: A is the union of two tangent
unitary-diameter balls to be covered by m = 2 balls. In this case, ∇G does
not exist. Even though this singular case is not covered by the theory, the
solution, which is the set A itself, was found with a single run of the method.
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Algorithm 2

I Algorithm 1 allows to find coverings of general shapes A, but is
relatively slow when a fine discretization is required (i.e., a small
h). This occurs when A presents small thin features. Algorithm 1
only uses G and ∇G.

I Algorithm 2 deals with the case A = ∪p
j=1Aj and {Aj}p

j=1 are
non-overlapping convex polygons. Algorithm 2 uses G,∇G and
∇2G. In this case G,∇G and ∇2G can be computed analytically
which leads to a fast and accurate algorithm.
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Algorithm 2
I Compute Voronoi diagram with cells {Vi}m

i=1 associated with the
balls centers x1, . . . , xm.

I Compute convex polygons Wij = Aj ∩ Vi and Sij = Wij ∩ B(xi , r)
for j = 1, . . . ,p and i = 1, . . . ,m.

I KAj = {i ∈ {1, . . . ,m} | Sij 6= ∅}
I Partition Aj ∩ Ω(x , r) =

⋃
i∈KAj

Sij , j = 1, . . . ,p.

A1

A2

A1

A2

Figure: (left) A = ∪p
j=1Aj with p = 2 and Ω(x , r) = ∪m

i=1B(xi , r) with m = 10.
(right) Voronoi diagram and sets Sij .
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Algorithm 2

I Using the sets Sij , G,∇G and ∇2G can be computed analytically.
I G(x , r) = Vol(A)− Vol(A ∩ Ω(x , r)) = Vol(A)−

∑
(i,j)∈K Vol(Sij ).

I Using Green’s Theorem,

Vol(Sij ) =

∫
Sij

dxdy =

∫
∂Sij

x dy

=
∑

[v ,w ]∈E(Sij )

∫ 1

0
xE(t) dyE(t) +

∑
(v ,w)∈A(Sij )

∫ θw

θv

xA(θ) dyA(θ)

and this can be computed analytically.
I Here E(Sij ) is the set of edges of ∂Sij , and A(Sij ) is the set of

arcs of ∂Sij .
I Works in a similar way for ∇G and ∇2G.
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Algorithm 2

I The algorithms for computing G,∇G and ∇2G depend on the
computation of Ei and Ai for i = 1, . . . ,m.

I Computing Ei and Ai requires to compute the Voronoi diagram
(using Fortune’s algorithm) and to compute Wij = Vi ∩ Aj and
Sij = Wij ∩ B(xi , r).

I The worst-case time complexity of Algorithm 2 is
O(m log m + m

∑p
j=1 eAj ), where eAj is the number of sides of Aj .
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Numerical results for Algorithm 2

(a) Region (b) Partition (c) m = 10 (d) m = 20

(i) m = 70 (j) m = 80 (k) m = 90 (l) m = 100

Figure: (a) Sketch of America, partitioned into p = 34 convex polygons.
Pictures from (c) to (l) display the solutions for m ∈ {10, . . . , 100}.
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Numerical results for Algorithm 2

(a) Region (b) Partition (c) m = 10

(d) m = 20 (e) m = 30 (f) m = 40

(j) m = 80 (k) m = 90 (l) m = 100
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Conclusion

I Shape-Newton method in a nonsmooth setting.
I Algorithm 1 is based on first-order derivative and works for

general shapes A.
I Algorithm 2 is based on first- and second-order derivatives and

works for the union of non-overlapping convex polygons. Much
faster and more accurate than Algorithm 1.

I It seems that the assumptions used to derive ∇2G cannot be
weakened.

I A shape optimization approach to the problem of covering a
two-dimensional region with minimum-radius identical balls
E. G. Birgin, A. Laurain, R. Massambone, and A. G. Santana
SIAM Journal on Scientific Computing
43(3):A2047–A2078, 2021

I A Shape-Newton approach to the problem of covering with
identical balls.
E. G. Birgin, A. Laurain, R. Massambone, and A. G. Santana
arXiv:2106.03641, 2021
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Outlook

I Extension to PDE constraints in 2D→ the construction for Tt is
the same.

I Extension to 3D→ a new approach needs to be found to build Tt .
I Extension to arbitrary shapes instead of balls→ a new approach

needs to be found to build Tt .

THANKS FOR YOUR ATTENTION!
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