A shape optimization approach to the problem of covering a two-dimensional region with minimum-radius identical balls

Antoine Laurain

Instituto de Matemática e Estatística, Universidade de São Paulo.

joint work with: Ernesto G. Birgin, Rafael Massambone, Arthur G. Santana

Concepción 06/2021

Packing of spheres and covering problem

- Sphere packings, lattices and groups J.H. Conway and N.J.A. Sloane.
- The packing and covering problems in the whole space are kind of dual.
- The solutions to these problems often involve lattices.
- Kepler conjecture (3D) solved by Thomas Hales in 1998.
- Optimal packing in 8D solved by Maryna Viazovska in 2016.

Covering problem

- We consider the problem of covering a subset A of ℝ² (not the whole plane).
- $A \subset \mathbb{R}^2$ and $\Omega(\mathbf{x}, r) = \bigcup_{i=1}^m B(x_i, r)$ with $\mathbf{x} := \{x_i\}_{i=1}^m$.
- Find $(\mathbf{x}, r) \in \mathbb{R}^{2m+1}$ such that $A \subset \Omega(\mathbf{x}, r)$ with minimum r.
- Optimization formulation:

$$\underset{(\boldsymbol{x},r)\in\mathbb{R}^{2m+1}}{\text{Minimize}} r \text{ subject to } G(\boldsymbol{x},r) = 0,$$

where

$$G(\mathbf{x}, r) := \operatorname{Vol}(A) - \operatorname{Vol}(A \cap \Omega(\mathbf{x}, r))$$

• $G(\mathbf{x}, r) = 0$ if and only if $A \subset \Omega(\mathbf{x}, r)$ up to a set of zero measure, i.e., when $\Omega(\mathbf{x}, r)$ covers A.

Covering problem

Figure: (a) represents a region *A* (orange color) to be covered by a union of balls $\Omega(\mathbf{x}, r)$. (b) represents, in red, $\partial \Omega(\mathbf{x}, r) \cap A$. Each $\mathcal{A}_i := \partial B(x_i, r) \cap \partial \Omega(\mathbf{x}, r) \cap A$ corresponds to the red arcs intersecting $\partial B(x_i, r)$. In this example, most sets \mathcal{A}_i contain two or three maximal arcs and there is only one \mathcal{A}_i with four maximal arcs.

Some important notations

- Given $x, y \in \mathbb{R}^n$, $x \cdot y = x^\top y \in \mathbb{R}$ and $x \otimes y = xy^\top \in \mathbb{R}^{n \times n}$.
- ▶ $B(x_i, r)$ denotes an open ball with center $x_i \in \mathbb{R}^2$ and radius *r*.
- For a sufficiently smooth set S ⊂ ℝ², ν_S(z) denotes the unitary-norm outwards normal vector to S at z.
- *τ_S(z)* is the unitary-norm tangent vector to ∂S at z (pointing counter-clockwise).
- ▶ When $S = B(x_i, r)$ we use $\nu_i(z) := \nu_{B(x_i, r)}$ and $\tau_i(z) := \tau_{B(x_i, r)}$.
- For intersection points $z \in \partial S \cap B(x_i, r)$, we also use the notation $\nu_{-i}(z) := \nu_S(z)$.

Figure: The set $A_i = \partial B(x_i, r) \cap \Omega(\mathbf{x}, r) \cap A$ is composed of two arcs (in red). If $z \in \partial B(x_i, r) \cap \partial B(x_\ell, r)$ for some $\ell \neq i$, as for z = w, then $\nu_{-i}(z) = \nu_\ell(z)$, while if $z \in \partial B(x_i, r) \cap \partial A$, as for $z \in \{u, v\}$, then $\nu_{-i}(z) = \nu_A(z)$.

First and second-order derivative of G

- The derivatives of G can be computed using techniques of shape calculus [Delfour, Henrot, Murat, Pierre, Simon, Sokolowski, Zolésio].
- ► Assuming (*x*, *r*) is non-degenerate:

$$\nabla G(\boldsymbol{x},r) = -\left(\int_{\mathcal{A}_1} \nu_1(z) \, dz, \cdots, \int_{\mathcal{A}_m} \nu_m(z) \, dz, \int_{\partial \Omega(\boldsymbol{x},r) \cap A} \, dz\right)^\top,$$

with $A_i := \partial B(x_i, r) \cap \partial \Omega(\mathbf{x}, r) \cap A$.

► The Hessian of *G* is given by:

$$\nabla^2 G(\boldsymbol{x}, r) = \begin{pmatrix} \nabla^2_{\boldsymbol{x}} G(\boldsymbol{x}, r) & \nabla^2_{\boldsymbol{x}, r} G(\boldsymbol{x}, r) \\ \nabla^2_{\boldsymbol{x}, r} G(\boldsymbol{x}, r)^\top & \nabla^2_r G(\boldsymbol{x}, r) \end{pmatrix},$$

with the blocks $\nabla^2_{\boldsymbol{x}} G(\boldsymbol{x}, r) \in \mathbb{R}^{2m \times 2m}$, $\nabla^2_{\boldsymbol{x}, r} G(\boldsymbol{x}, r) \in \mathbb{R}^{2m}$, and $\nabla^2_r G(\boldsymbol{x}, r) = \partial^2_r G(\boldsymbol{x}, r) \in \mathbb{R}$.

- A_i is a finite union of arcs of the circle $\partial B(x_i, r)$.
- ▶ \mathbb{A}_i denotes the set of pairs (v, w) that represent the arcs in \mathcal{A}_i .
- $\mathbb{A}_i = \emptyset$ if \mathcal{A}_i is a full circle.
- The scalar $\nabla_r^2 G(\mathbf{x}, r)$ is given by:

$$\nabla_r^2 G(\mathbf{x}, r) = -\frac{\operatorname{Per}(\partial \Omega(\mathbf{x}, r) \cap A)}{r} - \sum_{i=1}^m \sum_{(\mathbf{v}, \mathbf{w}) \in \mathbb{A}_i} \left[\left[\frac{|L(z)| - \nu_{-i}(z) \cdot \nu_i(z)}{\nu_{-i}(z) \cdot \tau_i(z)} \right] \right]_v^w$$

$$\blacktriangleright \ \llbracket \Phi(z) \rrbracket_{v}^{w} := \Phi(w) - \Phi(v)$$

For an extreme z of an arc represented by $(v, w) \in \mathbb{A}_i$,

$$L(z) = \{\ell \in \{1, \ldots, m\} \setminus \{i\} \mid z \in \partial B(x_{\ell}, r)\}.$$

• Matrix $\nabla_{\mathbf{x}}^2 G(\mathbf{x}, r)$ is given by the 2 × 2 diagonal blocks

$$\partial_{x_i x_i}^2 G(\mathbf{x}, r) = rac{1}{r} \int_{\mathcal{A}_i} -
u_i(z) \otimes
u_i(z) + au_i(z) \otimes au_i(z) \, dz
onumber \ + \sum_{(\mathbf{v}, \mathbf{w}) \in \mathbb{A}_i} \left[\left[rac{
u_{-i}(z) \cdot
u_i(z)}{
u_{-i}(z) \cdot
u_i(z)} \,
u_i(z) \otimes
u_i(z)
ight]
ight]_{\mathbf{v}}^{\mathbf{w}}$$

and the 2 \times 2 off-diagonal blocks

$$\partial_{x_i x_\ell}^2 G(\boldsymbol{x}, r) = \sum_{\boldsymbol{v} \in \mathcal{I}_{i\ell}} \frac{\nu_i(\boldsymbol{v}) \otimes \nu_\ell(\boldsymbol{v})}{\nu_\ell(\boldsymbol{v}) \cdot \tau_i(\boldsymbol{v})} - \sum_{\boldsymbol{w} \in \mathcal{O}_{i\ell}} \frac{\nu_i(\boldsymbol{w}) \otimes \nu_\ell(\boldsymbol{w})}{\nu_\ell(\boldsymbol{w}) \cdot \tau_i(\boldsymbol{w})},$$

► $\nabla^2_{\mathbf{x},r} G(\mathbf{x},r)$ is given by the 2-dimensional arrays

$$\partial_{x_i r}^2 G(\mathbf{x}, r) = -\frac{1}{r} \int_{\mathcal{A}_i} \nu_i(z) \, dz \\ + \sum_{(\mathbf{v}, \mathbf{w}) \in \mathbb{A}_i} \left[\left[\frac{\nu_{-i}(z) \cdot \nu_i(z)}{\nu_{-i}(z) \cdot \tau_i(z)} \nu_i(z) - \sum_{\ell \in L(z)} \frac{\nu_i(z)}{\tau_i(z) \cdot \nu_\ell(z)} \right] \right]_{\mathbf{v}}^{\mathbf{w}}$$

For an extreme z of an arc represented by $(v, w) \in \mathbb{A}_i$,

$$L(z) = \{\ell \in \{1,\ldots,m\} \setminus \{i\} \mid z \in \partial B(x_{\ell},r)\}.$$

Center perturbations

Center perturbations

Radius perturbations

Radius perturbations

Construction of bi-Lipschitz mappings T_t

- ► How can we build bi-Lipschitz mappings $T_t : \Omega(\mathbf{x}, r) \rightarrow \Omega(\mathbf{x} + t\delta \mathbf{x}, r)$ and $T_t : \Omega(\mathbf{x}, r) \rightarrow \Omega(\mathbf{x}, r + t\delta r)$?
- First, we observe that ∂Ω(x, r) contains singular points (the circle intersections) and regular points.
- The motion of the singular points is fully determined by the center or radius perturbations.
- For instance, the motion of an intersection point in ∂B(x_i + tδx_i, r) ∩ ∂B(x_j + tδx_j, r) can be fully determined, for sufficiently small t, using the implicit function theorem.
- ► The motion of the regular points is <u>underdetermined</u>. Roughly speaking, one direction of T_t is prescribed (such as $t\delta x_i$ for center perturbations), while the orthogonal direction can be choosen "freely".

Construction of bi-Lipschitz mappings T_t

- Thus, we are free to choose this orthogonal direction of T_t at regular points, as long as these constraints are satisfied:
 - *T_t* must be bi-Lipschitz
 - The value of T_t is prescribed at the singular points.
 - $T_t(\Omega(\mathbf{x}, r) \cap A) = \Omega(\mathbf{x} + t\delta \mathbf{x}, r) \cap A$ or $T_t(\Omega(\mathbf{x}, r) \cap A) = \Omega(\mathbf{x}, r + t\delta r) \cap A.$
- Since ∂Ω(x, r) is a union of arcs, we can use local polar coordinates on each B(x_i, r) to define the missing direction of T_t at regular points.
- Then we extend *T_t* to Ω(*x*, *r*) ∩ *A*, in a way that preserves the bi-Lipschitz property of *T_t*.

Shape derivative for radius perturbations

We can actually build a bi-Lipschitz mapping

$$T_t: \Omega(\mathbf{x}, r) \cap \mathbf{A} \to \Omega(\mathbf{x}, r + t\delta r) \cap \mathbf{A}.$$

T_t allows us to use the following change of variables:

$$G(\mathbf{x}, r + t\delta r) = \operatorname{Vol}(A \setminus \Omega(\mathbf{x}, r + t\delta r))$$

= $\operatorname{Vol}(A) - \operatorname{Vol}(A \cap \Omega(\mathbf{x}, r + t\delta r))$
= $\operatorname{Vol}(A) - \int_{\mathcal{T}_t(\Omega(\mathbf{x}, r) \cap A)} dz$
= $\operatorname{Vol}(A) - \int_{\Omega(\mathbf{x}, r) \cap A} |\det D\mathcal{T}_t(z)| dz.$

• Then the derivative is, with $V := \partial_t T_t|_{t=0}$,

$$\frac{d}{dt}G(\mathbf{x}, r+t\delta r)\Big|_{t=0} = -\int_{\Omega(\mathbf{x}, r)\cap A} \operatorname{div} V(z) \, dz$$
$$= -\int_{\partial(\Omega(\mathbf{x}, r)\cap A)} V(z) \cdot \nu(z) \, dz = -\delta r \int_{\partial\Omega(\mathbf{x}, r)\cap A} dz$$

- The property V(z) · ν(z) = δr on ∂Ω(x, r) ∩ A comes from the explicit construction of T_t on ∂(Ω(x, r) ∩ A).
- The calculation works in a similar way for center perturbations and for second-order derivatives.
- ► The main task is to build the appropriate T_t for each type of perturbation, and compute the corresponding V := ∂_tT_t|_{t=0}.

Other shape derivatives

- These derivatives were obtained assuming (x, r) is non-degenerate, i.e., when the following assumptions hold.
- ▶ Assumption 1. The centers $\{x_i\}_{i=1}^m$ satisfy $||x_i x_j|| \notin \{0, 2r\}$ for all $1 \le i, j \le m$, $i \ne j$ and $\partial B(x_i, r) \cap \partial B(x_j, r) \cap \partial B(x_k, r) = \emptyset$ for all $1 \le i, j, k \le m$ with i, j, k pairwise distinct.
- Assumption 2. $\Omega(\mathbf{x}, r)$ and A are compatible.
- This yields the following decomposition, with \bar{k} independent of t:

$$\partial \Omega(\mathbf{x} + t\delta \mathbf{x}, \mathbf{r}) \cap \mathbf{A} = \bigcup_{k=1}^{\bar{k}} S_k(t),$$

where $S_k(t)$ are arcs parameterized by an angle aperture $[\theta_{k,v}(t), \theta_{k,w}(t)]$, and $t \mapsto \theta_{k,v}(t), t \mapsto \theta_{k,w}(t)$ are continuous.

Figure: Compatibility of a ball and a square. From left to right: (a) compatible (b) compatible (c) not compatible (d) not compatible.

Example of degenerate case: two tangent disks

Figure: Two tangent disks $B(x_1, r)$ and $B(x_2, r)$ may either merge if $(x_1 - x_2) \cdot (\delta x_1 - \delta x_2) < 0$ or have an empty intersection if $(x_1 - x_2) \cdot (\delta x_1 - \delta x_2) > 0$.

Example of degenerate case: three disks

- Other singular cases: two superposed disks, a disk tangent to ∂A, etc ...
- Singular cases can be investigated using asymptotic analysis: G is sometimes differentiable, but seems to never be twice differentiable.
- Gateaux semidifferentiablity of the components of ∇G can often be proved.

Algorithm 1

After discretization, the problem becomes a constrained nonlinear programming problem (with a linear objective function and a single difficult nonlinear constraint) of the form

Minimize $f(\mathbf{x}, r) := r$ subject to $G_h(\mathbf{x}, r) = 0$ and $r \ge 0$

- We considered the safeguarded Augmented Lagrangian (AL) method Algencan [Andreani, Birgin, Martínez, Schuverdt].
- Algencan is based on the PHR AL function, in this case:

$$L_{\rho}(\boldsymbol{x},\boldsymbol{r},\lambda) = f(\boldsymbol{x},\boldsymbol{r}) + \frac{\rho}{2} \left[G_{h}(\boldsymbol{x},\boldsymbol{r}) + \frac{\lambda}{\rho} \right]^{2}, \qquad (1)$$

for all $\rho > 0$, $r \ge 0$, and $\lambda \in \mathbb{R}$.

Each iteration of the method consists in the approximate minimization of (1) subject to r ≥ 0 followed by the update of the Lagrange multiplier λ and the penalty parameter ρ.

Numerical results for Algorithm 1

Figure: Solutions found for covering two-squares region with m = 4, 9, 12, peaked star region with m = 4, 5, 9, ring, half-ring, and two-half-rings regions with m = 3, 7, 11, and disconnected region with m = 3, 7, 15.

Numerical results for Algorithm 1

Figure: Solutions found for covering heart-shape and soap-shape regions with m = 3, 7, 11, 15, and disconnected region with m = 3, 7, 15.

Performance metrics for Algorithm 1

Alg. 1.1 computes *G* (complexity $O(1/h^2)$), Alg. 1.2 computes ∇G (complexity O(1/h)), "trial" is the number of the initial guess yielding the best solution, "outit" and "innit" are the number of outer and inner iterations of the AL optimization method.

Region A	т	r*	trial	outit	innit	Alg. 1.1	Alg. 1.2	CPU Time
	3	0.7949	100	20	155	2188	249	59.08
	7	0.5366	69	15	50	214	117	7.92
	11	0.4100	89	12	68	303	130	12.77
	15	0.3476	78	13	77	311	138	15.46
	3	0.6578	70	12	76	402	134	4.61
	7	0.4754	30	13	119	1228	185	20.11
	11	0.3564	61	13	72	261	132	6.12
	15	0.3154	69	13	80	447	140	12.77
	4	0.3810	91	11	40	222	90	2.78
	9	0.2474	70	11	45	197	94	3.18
	12	0.2064	32	10	66	346	112	6.16
\rightarrow	4	0.2317	82	20	136	2221	230	14.55
	5	0.1892	32	10	61	251	107	1.70
	9	0.1300	59	10	56	248	107	1.84
\bigcirc	3	0.4295	12	10	40	186	86	0.49
	7	0.2149	36	10	35	155	78	0.58
	11	0.1441	23	12	94	337	152	1.50

Figure: Solutions found varying $h \in \{0.1, 10^{-2}, 10^{-3}, 10^{-4}\}$ in problems (a–d) "two squares" and (e–h) "peaked star" with m = 9. The peaked star requires a smaller h to cover its small thin features.

Figure: An example of a degenerate case: *A* is the union of two tangent unitary-diameter balls to be covered by m = 2 balls. In this case, ∇G does not exist. Even though this singular case is not covered by the theory, the solution, which is the set *A* itself, was found with a single run of the method.

- Algorithm 1 allows to find coverings of general shapes A, but is relatively slow when a fine discretization is required (i.e., a small h). This occurs when A presents small thin features. Algorithm 1 only uses G and ∇G.
- ▶ Algorithm 2 deals with the case $A = \bigcup_{j=1}^{p} A_j$ and $\{A_j\}_{j=1}^{p}$ are non-overlapping convex polygons. Algorithm 2 uses G, ∇G and $\nabla^2 G$. In this case G, ∇G and $\nabla^2 G$ can be computed analytically which leads to a fast and accurate algorithm.

Algorithm 2

- Compute Voronoi diagram with cells { V_i}^m_{i=1} associated with the balls centers x₁,..., x_m.
- Compute convex polygons $W_{ij} = A_j \cap V_i$ and $S_{ij} = W_{ij} \cap B(x_i, r)$ for j = 1, ..., p and i = 1, ..., m.

►
$$\mathcal{K}_{A_j} = \{i \in \{1, ..., m\} \mid S_{ij} \neq \emptyset\}$$

► Partition $A_j \cap \Omega(\mathbf{x}, r) = \bigcup_{i \in \mathcal{K}_{A_j}} S_{ij}, \quad j = 1, ..., p$

Figure: (left) $A = \bigcup_{j=1}^{p} A_j$ with p = 2 and $\Omega(\mathbf{x}, r) = \bigcup_{i=1}^{m} B(x_i, r)$ with m = 10. (right) Voronoi diagram and sets S_{ij} .

Algorithm 2

▶ Using the sets S_{ij} , G, ∇G and $\nabla^2 G$ can be computed analytically.

$$\blacktriangleright \quad G(\boldsymbol{x},r) = \operatorname{Vol}(A) - \operatorname{Vol}(A \cap \Omega(\boldsymbol{x},r)) = \operatorname{Vol}(A) - \sum_{(i,j) \in \mathcal{K}} \operatorname{Vol}(S_{ij}).$$

Using Green's Theorem,

$$\begin{aligned} \mathsf{Vol}(S_{ij}) &= \int_{S_{ij}} dx dy = \int_{\partial S_{ij}} x \, dy \\ &= \sum_{[v,w] \in \mathbb{E}(S_{ij})} \int_{0}^{1} x_{\mathcal{E}}(t) \, dy_{\mathcal{E}}(t) + \sum_{(v,w) \in \mathbb{A}(S_{ij})} \int_{\theta_{v}}^{\theta_{w}} x_{\mathcal{A}}(\theta) \, dy_{\mathcal{A}}(\theta) \end{aligned}$$

and this can be computed analytically.

- Here E(S_{ij}) is the set of edges of ∂S_{ij}, and A(S_{ij}) is the set of arcs of ∂S_{ij}.
- Works in a similar way for ∇G and $\nabla^2 G$.

- The algorithms for computing G, ∇G and ∇²G depend on the computation of E_i and A_i for i = 1,..., m.
- ► Computing \mathbb{E}_i and \mathbb{A}_i requires to compute the Voronoi diagram (using Fortune's algorithm) and to compute $W_{ij} = V_i \cap A_j$ and $S_{ij} = W_{ij} \cap B(x_i, r)$.
- ► The worst-case time complexity of Algorithm 2 is $O(m \log m + m \sum_{j=1}^{p} e_{A_j})$, where e_{A_j} is the number of sides of A_j .

Numerical results for Algorithm 2

Figure: (a) Sketch of America, partitioned into p = 34 convex polygons. Pictures from (c) to (l) display the solutions for $m \in \{10, ..., 100\}$.

Numerical results for Algorithm 2

Conclusion

- Shape-Newton method in a nonsmooth setting.
- Algorithm 1 is based on first-order derivative and works for general shapes A.
- Algorithm 2 is based on first- and second-order derivatives and works for the union of non-overlapping convex polygons. Much faster and more accurate than Algorithm 1.
- It seems that the assumptions used to derive ∇²G cannot be weakened.
- A shape optimization approach to the problem of covering a two-dimensional region with minimum-radius identical balls
 E. G. Birgin, A. Laurain, R. Massambone, and A. G. Santana SIAM Journal on Scientific Computing 43(3):A2047–A2078, 2021
- A Shape-Newton approach to the problem of covering with identical balls.

E. G. Birgin, A. Laurain, R. Massambone, and A. G. Santana arXiv:2106.03641, 2021

- Extension to PDE constraints in 2D \rightarrow the construction for T_t is the same.
- Extension to $3D \rightarrow a$ new approach needs to be found to build T_t .
- Extension to arbitrary shapes instead of balls \rightarrow a new approach needs to be found to build T_t .

- Extension to PDE constraints in 2D \rightarrow the construction for T_t is the same.
- Extension to $3D \rightarrow a$ new approach needs to be found to build T_t .
- Extension to arbitrary shapes instead of balls \rightarrow a new approach needs to be found to build T_t .

THANKS FOR YOUR ATTENTION!